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Quasiparticle excitations in UPd2Al3 were studied by means of heat-capacity (C) measurements under
rotating magnetic fields using a high-quality single crystal. The field dependence shows CðHÞ ∝ H1=2-like
behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥½0001� (c axis) and H∥½112̄0�
(a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures,
the polar-angle (θ) dependence of C exhibits a maximum along H∥½0001� with a twofold symmetric
oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°–60° from the
c axis in CðθÞ at intermediate fields (1≲ μ0H ≲ 2 T). These behaviors in UPd2Al3 purely come from the
superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical
calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole
angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap
determination, which can be applied to other exotic superconductors.

DOI: 10.1103/PhysRevLett.117.037001

The successive discoveries of heavy-fermion supercon-
ductivity in CeCu2Si2, UBe13, UPt3, and URu2Si2 [1–4],
opened up a frontier for exploring an unconventional
pairing mechanism. Afterward, it was found that isostruc-
tural compounds UPd2Al3 and UNi2Al3 show the coexist-
ence of unconventional superconductivity and a long-range
antiferromagnetic (AF) order [5,6]. 5f-electron supercon-
ductivity has been frequently observed in the vicinity of or
coexistent with an inherent long-range order [1–4], as is the
case of the above two AF superconductors [5,6]. Moreover,
unconventional superconductivity coexists with the hidden-
ordered state in URu2Si2 [4], and ferromagnetic order in
UGe2, URhGe, and UCoGe [7–9]. These facts imply that
nonphononic interactions associated with these ordered
phases play dominant roles in forming Cooper pairs.
In this Letter, we focus on the superconducting (SC) gap

symmetry of UPd2Al3, which crystallizes in the hexagonal
structurewith the space groupP6=mmm. Below TN∼14.5K,
the ordered moment ∼0.85μB=U with the wave vector
Q0 ¼ ð0; 0; 1=2Þ aligns antiferromagnetically along [0001]
and ferromagnetically in the hexagonal basal plane [10]. The
SC transition occurs at Tc ∼ 2.0 K with a large specific-heat
jump [5,11], indicating an intrinsic participation of 5f heavy
electrons. The interplay between the AF and SC states has
been suggested from tunnel-junction [12] and inelastic
neutron-scattering studies [13–16].
UPd2Al3 is a typical 5f system in which the 5f electron

exhibits duality, the localized and itinerant natures. On the

one hand, the anisotropic magnetic susceptibility χðTÞ as
well as the heat capacity are well explained by the
crystalline-electric-field level scheme for localized 5f2

electrons (U4þ, J ¼ 4) [17]. Furthermore, at the AF
transition, the 5f electron releases a large entropy
(∼0.7R ln 2), indicating that the 5f electrons have a
well-localized character [17]. On the other hand, the heavy
cyclotron effective masses of 5–65m0 (m0: the free-electron
mass) are observed from de Haas–van Alphen (dHvA)
measurements [18,19]. The observed heavy bands are well
explained by band calculations based on the 5f itinerant
model [19–22]. Given the fact that there are only a few 5f
heavy-electron superconductors whose Fermi surfaces have
been well established, UPd2Al3 is an ideal system for
understanding how the originally localized 5f electrons
acquire the itineracy with a huge effective mass and form
Cooper pairs overcoming the strong repulsions.
To understand the pairing mechanism, it is important to

clarify the SC gap symmetry, since it reflects the momen-
tum dependence of the pairing interaction. The NMR
Knight shift and the NMR= nuclear-quadrupole-resonance
(NQR) spin-relaxation rate (1=T1 ∝ T3) have clearly
shown the even-parity SC state with line node(s)
[23,24]. The inelastic neutron-scattering studies have pro-
posed the possibility of the gap function with nodal A1g
symmetry, ΔðkÞ ¼ Δ0 cosðkzcÞ, which satisfies ΔðkÞ ¼
−Δðkþ Q0Þ [25] and exhibits sign changes of the gap
function (line nodes) at the AF Brillouin zone boundary
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kz ¼ �ðπ=2cÞ, where Δ0 and c are the gap amplitude and
the c-axis lattice constant [14,15]. Furthermore, the precise
thermal-conductivity measurements have also supported
the presence of horizontal line nodes [26]. However, a
thermodynamic evidence for the horizontal line node in
heavy bands has not yet been established.
In order to examine the pairing symmetry of UPd2Al3

from the point of view of the heavy-electron density of
states, we studied the low-energy quasiparticle excitations by
means of heat-capacity measurements down to ∼0.1 K in
magnetic fields up to 4 T. The heat capacity was measured
by the thermal-relaxation methods in a dilution refrigerator,
and its field-orientation dependence CðH;ϕ; θÞ was mea-
sured with rotating magnetic fields using a 5 T × 3 T vector
magnet as shown in Fig. 1(a), where the azimuthal and polar
angles ϕ and θ are measured from the ½112̄0� and [0001],
respectively. A single crystalline UPd2Al3 (4.13 mg) with
the residual-resistivity ratio of 99 was prepared by the
Czochralski pulling method in a tetra-arc furnace. The high
quality was ensured by the dHvA oscillations in the dc
magnetization measurements for the present sample.
Figure 1(b) shows temperature dependencies of C=T,

measured at 0, 1, 2, and 3 T for H∥½0001� and H∥½112̄0�.
The SC transition temperature is Tc ∼ 2.0 K at zero field.

ForH∥½112̄0�, we also plot the data measured at 4 T, which
is larger than the upper critical field. The upturn of C=T at
low temperatures in magnetic fields comes from the nuclear
contribution.
Magnetic-field dependence of the heat capacity and its

anisotropy in low fields are useful to probe quasiparticle
excitations around nodes. In the case of a line node, for
instance, CðHÞ exhibitsH1=2-like (concave upward) behav-
ior at low T [27,28]. Moreover, this H1=2 dependence is
predicted to be slightly anisotropic depending on the angle
between H and the nodal direction [28–30]. The field-
angular variation of CðHÞ has indeed been observed in
nodal superconductors [31,32]. As can be seen in Fig. 1(c),
the field variation of the heat capacity ½CðHÞ� in the SC
state well below Tc showsH1=2-like curvature. Importantly,
this H1=2-like behavior is anisotropic between [0001] and
½112̄0� directions; C½0001�ðHÞ for H∥½0001� is larger than
C½112̄0�ðHÞ for H∥½112̄0� below ∼1.5 T, as will be shown
more clearly in Figs. 3(a) and 3(b). Both the amplitude of
the H1=2-like behavior and its anisotropy become more
pronounced at 0.20 K (¼ 0.1Tc) than at 0.60 K (¼ 0.3Tc).
In a high-field region above ∼2 T [Fig. 1(c)], the

anisotropy of CðHÞ is reversed: C½0001�ðHÞ < C½112̄0�ðHÞ.
This anisotropy reversal reflects the anisotropy of the upper
critical field Hc2. Because of the present experimental
limitation, the maximum field for H∥½0001� was 3 T,
slightly lower than Hc2 in this direction. For H∥½112̄0�,
CðHÞ=T at 0.20 K shows a kink at Hc2 ∼ 3.3 T. Note that
C½112̄0�ðHÞ=T in the SC state at T ¼ 0.20 K exhibits an
upturn in the high-H region, reminiscent of a strong Pauli
paramagnetic effect as observed in CeCoIn5 [33]. The
presence of the paramagnetic effect for UPd2Al3 is con-
sistent with the results of NMRKnight-shift measurements,
which points to an even-parity pairing [24].
The inset of Fig. 1(b) shows Hc2ðTÞ obtained from the

CðTÞ and CðHÞ data. The initial slope of Hc2ðTÞ is almost
the same between [0001] and ½112̄0�, indicating the
averaged Fermi velocity vF is not so different for both
directions, although the Fermi surface is rather complicated
[19–22]. Nevertheless, Hc2ðTÞ is evidently anisotropic at
low T. This fact suggests that the paramagnetic limitation is
anisotropic, reflecting the normal-state magnetic anisotropy
between [0001] and ½112̄0� directions [17].
To search for vertical line nodes, we measured the heat

capacity by rotating fields in the hexagonal basal plane.
Figures 2(a) and 2(b) show CðϕÞ=T in various magnetic
fields measured at 0.20 and 0.60 K, respectively. As can be
seen in Fig. 2, in a field of 2 T, we observe a sixfold
oscillation with a maximum at ϕ ¼ 30° (H∥½101̄0�) and a
minimum at ϕ ¼ 0° (H∥½112̄0�). This sixfold oscillation is
most pronounced at 3 Tand 0.20 K, and can be attributed to
the in-plane anisotropy of the Fermi velocity and Hc2, as
observed in thermal conductivity [26,34]. In a normal state
at 4 T and 0.20 K, another small sixfold oscillation with a
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FIG. 1. (a) The definition of azimuthal (ϕ) and polar (θ) angles
for the hexagonal structure, where the ϕ and θ are measured from
½112̄0� and [0001] axes, respectively. (b) Temperature depend-
ence of C=T in UPd2Al3, measured at 0, 1, 2, and 3 T for
H∥½0001� and H∥½112̄0�. For H∥½112̄0�, we also plot the data at
4 T with no SC transition. The inset shows Hc2, obtained from
temperature scans CðTÞ for H∥½0001� (closed circle) and
H∥½112̄0� (open circle). The diamond marker indicates Hc2,
obtained from field scans CðHÞ for H∥½112̄0�. (c) Magnetic-field
dependence of C=T for H∥½0001� and H∥½112̄0�, measured at
0.20 and 0.60 K. The inset shows CðHÞ=T measured at 0.20 K as
a function of H1=2 for H∥½0001� and H∥½112̄0�, where solid lines
are the results of linear fitting at low-field region.
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maximum (minimum) at 0° (30°) is seen, becoming weaker
at 0.60 K. This oscillation is attributed to the AF domain
structure [26,34]. At a low temperature (0.20 K) and low
field (0.5 T) region, no significant oscillation is observed,
being consistent with the absence of vertical line nodes as
reported from the angle-resolved thermal-conductivity
measurements [26].
To probe the horizontal line node, we further

examined the polar-angle (θ) dependence of the heat
capacity CðθÞ. Thanks to the weak anisotropy of the
Fermi velocity, there is a good chance to detect the
quasiparticle excitations around the horizontal line node
by CðθÞ measurements, in spite of the hexagonal structure.
In Figs. 3(a) and 3(b), we show CðθÞ=T measured in
various fields at 0.20 and 0.60 K ðϕ ¼ 0°Þ. Below 0.5 T, a
twofold oscillation is clearly observed with a maximum at
θ ¼ 0° (H∥½0001�) and a minimum at θ ¼ 90° (H∥½112̄0�).
The magnitude of the observed anisotropy at 0.5 T is
ΔC=Cmid ∼ 6.8% and 2.0% at 0.20 K and 0.60 K,
respectively, where ΔC≡ Cðθ ¼ 0°Þ − Cðθ ¼ 90°Þ and
Cmid ≡ ½Cðθ ¼ 0°Þ þ Cðθ ¼ 90°Þ�=2. Above 2.5 T, the
twofold angular oscillation is reversed and the maximum
appears along ½112̄0�, reflecting the underlying nodal
structure as well as the anisotropy of Hc2.
Very interestingly, in the field range from 1 to 2 T, a new

feature appears in CðθÞ in an intermediate angle region,
becoming more distinct with decreasing T [Figs. 3(a) and
3(b)]. For 0.20 K at 1 T, a shoulder or a hump appears at
θ ∼ 30°, and moves to the higher angle side θ ∼ 45°–60°
with increasingH from 1.5 and 2 T. This feature can still be
seen at 0.60 K in the field range 1.5–2 T. Above 2.5 T, it
finally merges into the maximum at θ ¼ 90° arising from
the Hc2 anisotropy. Remarkably, the maximum of CðθÞ=T
at 1.5 T occurs near 45°; Cðθ ¼ 45°Þ is larger than
Cðθ ¼ 90°Þ andCðθ ¼ 0Þ. Such a shoulder or hump feature

hardly arises from the anisotropy of Fermi velocity [36]. It
should also be noticed that there is no significant angular
dependence of CðθÞ in the normal (AF) state above Hc2
[Fig. 3(b)]. We thus conclude that the shoulder or hump
anomaly purely comes from the quasiparticle excitations
reflecting the nodal SC gap.
We argue that the observed field evolution of CðθÞ, i.e.,

the sign reversal of the twofold oscillation as well as the
shoulder or hump structure in the intermediate angular
region, provides strong evidence that a horizontal line node
exists on the Fermi surface at which vF is perpendicular to z.
Let us consider the zero-energy density of states (ZEDOS)
arising from the Doppler shift δE ∝ vs · vF of nodal quasi-
particle excitations due to the supercurrent circulating
around the vortices [27], where vs denotes the superfluid
velocity (vs⊥HÞ. At low fields, δE is clearly the largest for
θ ¼ 0 because all the nodal quasiparticles can contribute.
For θ ¼ 90°, by contrast, those nodal quasiparticles whose
vF is perpendicular to vs are not Doppler shifted and cannot
contribute to the ZEDOS. As a result, the induced ZEDOS
takes maximum (minimum) at θ ¼ 0° (θ ¼ 90°). This
twofold angular dependence of the ZEDOS explains the
angular variation of CðθÞ=T at low fields.
In a high-field region, the Hc2 anisotropy contributes

more to the CðθÞ=T because CðθÞ=T ∝ ½H=Hc2ðθÞ�β [36].
Generally, Hc2 is the lowest for the nodal direction
(θ ¼ 90° in the present case). As a consequence, CðθÞ=T
is expected to take the maximum at θ ¼ 90° in high fields,
as observed in Fig. 3(a).
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A crucial question is whether the horizontal line node
can also explain the shoulder or hump anomaly in CðθÞ at
θ ¼ 30°–45° observed in the intermediate range from 1 to
2 T [Fig. 3(a)]. To address this question, we performed
microscopic calculations of the ZEDOS by means of the
quasiclassical Eilenberger theory within the Kramer-Pesch
approximation [37] whose qualitative validity was checked
by Tsutsumi et al. [38]. Figure 4(a) shows the calculated
angular dependence of ZEDOS, assuming a spherical
Fermi surface and a model gap function ΔðkÞ ¼ Δ0kz that
has a horizontal line node at the equator. The results clearly
demonstrate that the anisotropy inversion occurs in the
ZEDOS as H increases. What is more important is that the
calculated results successfully reproduce the shoulder or
hump anomaly around 30°–60° in CðθÞ at the intermediate
fields. We confirmed that these features in the field
evolution of ZEDOS anisotropy can also be obtained for
an ellipsoidal Fermi surface, ensuring their robustness
against the shape of the Fermi surface.
We also performed the calculations with a model gap

function ΔðkÞ ¼ Δ0kzðkx þ ikyÞ, which has point nodes
along the poles in addition to a horizontal line node, and the
results are given in Fig. 4(b). The overall features of the field
evolution of the ZEDOS anisotropy are nearly the same as
those for the case in which a horizontal line node alone is
present. The only difference can be seen in high fields; a
weak dip occurs at θ ¼ 90°. Within the present experimental
resolution, however, we cannot discern whether this tiny dip
at θ ¼ 90° exists in our CðθÞ=T data.
The present experimental results, along with the micro-

scopic calculations, strongly indicate that a horizontal line
node exists in UPd2Al3. This conclusion is fully compatible
with the A1g gap function ΔðkÞ ¼ Δ0 cosðkzcÞ proposed by

previous experiments. We note, however, that the present
CðθÞ=T data alone cannot exclude the E1g type gap
function ΔðkÞ ¼ Δ0kzðkx þ ikyÞ, which is also possible
in the hexagonal structure (D6h) [39,40].
Finally, we discuss the relationship between the possible

gap structures and the Fermi surface of UPd2Al3. The
previous dHvA experiments and the band calculations
[19,21] have revealed that the Fermi surface consists of
four sheets. Among these, the hole sheet called “party hat”
(m� ∼ 65m0) and the electron sheet called “column”
(m� ∼ 33m0) are the heaviest. Both of the gap functions,
ΔðkÞ ¼ Δ0kz and ΔðkÞ ¼ Δ0kzðkx þ ikyÞ, have a horizon-
tal line node on these sheets. It is noteworthy that the Fermi
surface is missing along the z direction in these principal
sheets. This implies that even if the gap function has polar
point nodes, they are hardly detected by the heat-capacity
measurements that mainly probe the heaviest bands.
In conclusion, we investigated the SC quasiparticle

excitations of the AF heavy-fermion superconductor
UPd2Al3 by means of heat-capacity measurements on a
high-quality single crystal. The low-T anisotropy in CðHÞ ∝
H1=2 behavior and its angular dependence in low fields
strongly indicate the presence of a horizontal line node. The
most striking observation in the present study is the field
evolution of the anisotropy in the polar angle dependence of
the heat capacity CðθÞ, in particular the shoulder or hump
anomaly that emerges at intermediate magnetic fields
(1≲H ≲ 2 T) arising from low-energy nodal quasiparticle
excitations. These experimental results of CðH; θÞ can be
successfully reproduced by theoretical calculations assuming
a horizontal line node. As demonstrated in this Letter, the
polar angle dependence of CðθÞ possesses sufficiently high
resolution to detect the presence of the horizontal line node.
The omnidirectional measurements of angle-resolved
CðH;ϕ; θÞ will be a useful tool to elucidate the gap
symmetry in various exotic superconductors.
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