
Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses

Edan Lerner,1 Gustavo Düring,2 and Eran Bouchbinder3
1Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

2Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
3Chemical Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel

(Received 18 April 2016; published 12 July 2016)

Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet
their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of
several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a
crossover size LD, the low-frequency tail of the density of states follows DðωÞ ∼ ω4 up to the vicinity of the
lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational
frequency in systems of sizeL < LD isWeibullian, with scaling exponents in excellent agreement with theω4

law. We further show that the lowest-frequency modes are spatially quasilocalized and that their localization
and associated quartic anharmonicity are largely frequency independent. The effect of preparation protocols
on the low-frequency modes is elucidated, and a number of glassy length scales are briefly discussed.
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Introduction.—Many basic mechanical, static, dynamic,
and thermodynamic properties of disordered systems depend
on the abundance of “soft excitations” emerging from their
intrinsic disordered nature. For example, nonlinear localized
two-level systems are believed to be responsible for the
anomalous thermodynamic properties of glasses at very low
temperatures [1,2]. Plastic flow in glassy materials occurs via
the collective dynamics of shear transformation zones which
originate from destabilizing quasilocalized soft modes [3–5].
Relaxation processes in deeply supercooled liquids were
observed to be highly correlated in space with quasilocalized
soft modes [6]. Energy and heat transport [7,8], macroscopic
elasticity [9,10], and sound attenuation [11] in soft solids
were all shown to depend on the density of low-lying soft
modes. Thermal energy has been shown to focus spatially
where localized soft modes reside [12]. A first principles
understanding of the abundance of such excitations is,
therefore, of key importance.
On large enough length scales, a glass behaves like a

continuum elastic solid [13,14], for which the lowest-
frequency excitations are Goldstone modes (plane waves)
[15]. The density per unit volume of Goldstone modes is
known to follow Debye’s theory, DðωÞ ∼ ωđ−1, with đ
being the spatial dimension and ω the mode frequency [16].
In generic glassy systems, the Goldstone modes overwhelm
the density of states at low frequencies. This, in turn, poses
serious difficulties in using conventional approaches to
study the distribution of low-frequency glassy modes which
emerge due to microscale disorder [17].
The jamming scenario in soft athermal glasses [9,18] or

thermal hard-sphere glasses [19] provides a useful theo-
retical framework for understanding the density of low-
frequency excitations in a subclass of disordered solids in
which the effective number of interactions between the

constituent degrees of freedom approaches Nđ from above,
with N the number of particles. In particular, effective
medium [11,20,21] and infinite-dimension replica [22–24]
calculations predict DðωÞ ∼ ω2 independently of spatial
dimension. Recent numerical simulations showed that this
relation holds close to the jamming point but breaks down
away from it [25].
What happens away from the jamming point in generic

glassy systems? Several theories predicted the density of
non-Goldstone low-frequencymodes for generic glasses, i.e.,
away from the jamming point, to rise from zero asDðωÞ ∼ ω4

[26–29]. In a recent numerical investigation of theHeisenberg
spin glass model in 3D, it was found that upon introducing a
fieldwhich suppressesGoldstonemodes, the density of states
followed the ω4 law at low frequencies [30]. However, to the
best of our knowledge, no such evidence has ever been
presented for generic structural glasses.
In this Letter, we employ extensive numerical simula-

tions to investigate the low-frequency vibrational modes of
computer-generated structural glasses in three dimensions
(3D). We show that when carefully tuning the system size
L to be sufficiently smaller than a crossover size LD,
Goldstone modes are pushed to high frequencies, revealing
a density of glassy modes that follows DðωÞ ∼ ω4. This
result, which to the best of our knowledge is the first of its
kind, is demonstrated for several popular model glasses.
Further support for this key result is presented by

studying the sample-to-sample statistics of minimal vibra-
tional frequencies (MVFs) shown to be Weibullian, with
scaling exponents perfectly consistent with the ω4 law. We
also study the localization and anharmonic properties of
the lowest-frequency modes, showing that the softest
non-Goldstone modes are quasilocalized, and their asso-
ciated anharmonicity and degree of localization are largely
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uncorrelated with their frequencies. We further examine the
effect of preparation protocol on our findings, providing
evidence that the ω4 law persists in glasses that are slowly
cooled through the computer glass transition. Finally, we
identify several length scales that play important roles in
determining the statistics of MVFs and briefly discuss their
dependence on the glasses’ preparation protocol.
Models and methods.—We employed three different

computer glass-forming models in 3D: (i) a binary system
of soft spheres interacting via a one-sided harmonic
potential (HARM) under fixed pressure; (ii) the canonical
Kob-Andersen binary Lennard-Jones (KABLJ) system
[31]; (iii) a binary system of pointlike particles interacting
via inverse power-law purely repulsive pairwise potentials
(3DIPL). A complete and detailed description of the
models and the numerical methods used in this work is
provided in Ref. [32]. Unless stated otherwise, data are
shown for the 3DIPL system. The ensemble of solids at
zero temperature was created by a short equilibration run of
each system in the liquid phase, followed by a rapid quench
to zero temperature. For most system sizes, the ensembles
consist of a few thousand solids; for system sizes on the
order of millions of particles, we created a few tens or
hundreds of solids.
Results.—We begin with discussing the effects of system

size on the sample-to-sample statistics of MVFs in struc-
tural glasses. Let us assume that in the absence of
Goldstone modes the low-frequency glassy modes are
quasilocalized and only weakly correlated. If their frequen-
cies are distributed according to DðωÞ ∼ ωθ (θ > đ − 1),
then a conventional scaling argument implies that the
sample-to-sample mean MVF hωmini satisfies

Z hωmini

0

DðωÞdω ∼ N−1 ⇒ hωmini ∼ L −ðđ=1þθÞ: ð1Þ

The distribution Pðωmin;LÞ of MVFs for different system
sizes in 3D, i.e., đ ¼ 3, is expected to follow [37]

Pðωmin;LÞ ¼ WðωminL3=1þθÞ; ð2Þ

where WðyÞ ¼ ððθ þ 1Þ=yθþ1
0 Þyθe−ðy=y0Þθþ1

is the Weibull
distribution and y0 a scale to be discussed below. The
important point is that since the lowest Goldstone fre-
quency scales as L−1, a crossover length LD is expected to
separate the glassy L−3=ð1þθÞ scaling and the Goldstone L−1

scaling of MVF.
The predictions of Eqs. (1) and (2) were tested by a large

ensemble of glassy samples of various sizes for the three
aforementioned glass-forming models. After quenching
each sample, the lowest nonzero eigenvalue of the dynami-
cal matrix Mij ≡ ½∂2U=ð∂~xi∂~xjÞ�, with U denoting the
potential energy and ~xi the coordinate vector of the ith
particle, was calculated. The MVF ωmin of each sample is
given by the square root of the lowest nonzero eigenvalue
of M (particle masses are set to unity).
In Fig. 1(a), the sample-to-sample means hωmini rescaled

by 2π
ffiffiffiffiffiffiffiffi
μ=ρ

p
=a0 are plotted vs the system size L. Here, a0 is

a microscopic length scale that characterizes the pairwise
potential, μ is the athermal shear modulus [38], and ρ≡
N=V is the density with V ¼ Lđ . We find that for all
models considered and systems of size L≲ LD ≈ 60 (in our
microscopic units) hωmini ∼ L−3=5. Equation (1) then sug-
gests that θ ¼ 4.
In Figs. 1(b) and 1(c), we plot the sample-to-sample

distributions of MVFs PðωminÞ measured for the 3DIPL
system. Figure 1(b) shows the raw distributions, while in
Fig. 1(c) the same distributions are shown in terms of the
rescaled variable ωminL3=5, following Eq. (2) with θ ¼ 4.
The rescaling assuming Weibullian statistics leads to an
essentially perfect collapse of the distributions. The con-
tinuous magenta line represents the Weibull distribution
WðyÞ ∝ y4e−ðy=y0Þ5 , with y0 ≈ 4. The quality of this col-
lapse constitutes additional strong evidence for the robust-
ness of the DðωÞ ∼ ω4 law.

(c)(b)(a)

FIG. 1. (a) Sample-to-sample mean MVF hωmini rescaled by 2π
ffiffiffiffiffiffiffiffi
μ=ρ

p
=a0 vs sample length L, for the 3DIPL, KABLJ, and HARM

models. The dashed line represents the expectation for the lowest-frequency Goldstone modes 2π
ffiffiffiffiffiffiffiffi
μ=ρ

p
=L. (b) Sample-to-sample

distributions of the minimal vibrational frequency PðωminÞ for the 3DIPL system. (c) The same distributions plotted as a function of the
rescaled frequency ωL3=5. The continuous magenta line represents the Weibull distribution WðyÞ ∝ y4e−ðy=y0Þ5 , with y0 ≈ 4.
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These results suggest that in systems with L ≪ LD ≈ 60,
a low-frequency tail of the form DðωÞ ∼ ω4 should be
directly observable. Guided by these results, the low-
frequency tails of DðωÞ were calculated and plotted in
Fig. 2 for all the aforementioned glass-forming models and
various system sizes. The left columns display the raw
distributions, while in the right column we plotted the same
distributions as a function of the frequencies rescaled by
the lowest Goldstone mode frequency ωL=ð2π ffiffiffiffiffiffiffiffi

μ=ρ
p Þ. The

magenta (solid) lines correspond to DðωÞ ∼ ω4, which
appears to be followed by the data for all models, up to
the vicinity of the lowest Goldstone mode frequency
(indicated by the dash-dotted line).
Localization and anharmonicity.—Once the ω4 scaling

is established, we study next the localization properties and
anharmonicity of the lowest frequency modes. We first
consider the participation ratio e≡ ½NP

iðΨ̂i · Ψ̂iÞ2�−1 of
the lowest-frequency modes Ψ̂, which is an indicator of the
degree of their spatial localization. Figure 3(a) shows a
scatter plot of the products Ne vs the rescaled MVF. There
appears to be no clear correlation between the localization
degree of the softest modes and their frequencies for
ωmin < 2π

ffiffiffiffiffiffiffiffi
μ=ρ

p
=L. The inset shows the median of e vs

system size N, revealing a clear e ∼ N−1 scaling for
N ≤ 64000 < ρL3

D. This indicates that the lowest-
frequency modes are quasilocalized, supporting similar
conclusions by Schober and coworkers [39–41].
In Fig. 3(c), a scatter plot of the quartic anharmonicity

χ ≡ ½∂4U=ð∂~xi∂~xj∂~xk∂~xlÞ� ⦙ Ψ̂iΨ̂jΨ̂kΨ̂l associated with
the lowest-frequency modes vs the rescaled MVF is

presented. We observe that the anharmonicity of the softest
modes is also not correlated with their frequencies, as long
as the latter are smaller than the lowest Goldstone mode
frequency. In addition, the anharmonicity is N independent
for systems with L < LD (see inset).
To further explore the localization properties, we show in

Fig. 4(a) that the spatial profile [32] of the lowest-frequency
mode (amongst our entire ensemble of minimal frequency
modes in systems with N ¼ 106) decays as r−2 for
r≳ ξg ≈ 10. This same decay profile was found for
destabilizing modes at the onset of plastic instabilities in
externally deformed athermal glasses [5,42]. In Fig. 4(b),
we show the ensemble lowest mode itself, demonstrating a
core size consistent with ξg ≈ 10, as estimated from the
decay profile. We identify ξg as the localization length of
quasilocalized soft modes.
Preparation protocols and length scales.—Recent

experiments suggest that glasses created by careful vapor
deposition techniques [43] are free of low-frequency glassy
modes, as indicated by the crystallinelike temperature
dependence of their specific heat [44] and by their sup-
pressed β relaxation [45]. It is, therefore, important to test
whether the observed ω4 law and the Weibullian statistics
of MVFs are affected by the preparation protocol.
To this aim, in addition to the rapidly quenched glasses

discussed up to now, we also prepared an ensemble of
glassy samples that were slowly quenched through the
computer glass transition [32]. In Fig. 5(a), we plot hωmini
rescaled by 2π

ffiffiffiffiffiffiffiffi
μ=ρ

p
=a0 vs L for the rapidly and slowly

quenched ensembles. It is observed that the slower

(a)

(c)

(b)

(d)

FIG. 3. Scatter plots of the product Ne (a) and anharmonicity χ
(b) vs the rescaled MVF. Median participation ratio e and
anharmonicity χ vs system size are shown in the insets of panels
(a) and (b), respectively.

(a)

(d)(c)

(b)

FIG. 2. Left column: density of vibrational modes DðωÞ
measured in (a) the 3DIPL system and (c) the KABLJ and
HARM systems. The continuous magenta lines all represent the
scaling DðωÞ ∼ ω4. Right column: same distributions plotted vs
the rescaled frequencies ωL=ð2π ffiffiffiffiffiffiffiffi

μ=ρ
p Þ. The vertical dashed

lines represent the lowest Goldstone mode frequency expectation.
Distributions were shifted vertically for visibility.
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quenched glasses still exhibit hωmini ∼ L−3=5 scaling,
indicating the robustness of the ω4 law to different
preparation protocols (see further discussion in
Ref. [32]). Note that the rescaled hωminiðLÞ does not
collapse onto a single curve for the two ensembles, which
implies that the preparation protocol dependence of hωmini
and μ (in fact,

ffiffiffi
μ

p
) is different. We address this point next.

In Figs. 5(b) and 5(c), the sample-to-sample distributions
of hωmini and μ are plotted, respectively. Both distributions
exhibit stiffening as the cooling rate decreases, though
hωmini stiffens significantly more strongly (the mean shifts
to a higher frequency by roughly 25%) than μ (the mean
shifts by roughly 10%), which is consistent with the
noncollapse observed in Fig. 5(a). Finally, in Fig. 5(d),
the sample-to-sample distribution of the participation ratio
e is plotted, indicating that the glassy soft modes become
more localized when the samples are cooled more slowly.

This implies that the localization length ξg decreases with
decreasing cooling rate.
How should one interpret these preparation protocol

dependencies and their relation to glassy length scales? To
address this question, we rewrite Eq. (1) in dimensional
form as hωmini ∼ ωgðL=ξsÞ−đ=5. Here, ωg is a “glassy
modes” characteristic frequency scale, which must appear
in a parent distribution P0ðωÞ ∼ ω−1

g ðω=ωgÞ4 associated
with Weibullian statistics, and ξs is a “site length” that
implies that hωmini of each sample is the softest mode
amongst ðL=ξsÞđ candidates. ωg is generally preparation
protocol dependent and is expected to stiffen with decreas-
ing cooling rates. While this behavior rationalizes the
observed trend in hωmini, we cannot rule out the possibility
that ξs is also protocol dependent, which implies that the
stiffening of hωmini may not be wholly explained by the
stiffening of ωg (see related discussion in Ref. [46]). At this
point, however, we are unable to disentangle the prepara-
tion protocol dependencies of ωg and ξs.
Up to now, three glassy length scales were mentioned:

the crossover length LD, the localization length ξg, and the
site length ξs. We briefly note that the crossover length LD
is determined by the system size at which the lowest glassy
mode frequency is of the order of the lowest Goldstone
frequency, i.e., ωgðLD=ξsÞ−3=5 ∼ L−1

D

ffiffiffiffiffiffiffiffi
μ=ρ

p
. This leads to

LD ∼ ξBPðξBP=ξsÞ3=2, where we identified yet another
length scale ξBP ≡ ω−1

g

ffiffiffiffiffiffiffiffi
μ=ρ

p
, the “boson peak” length

scale, closely related to the one introduced in, e.g.,
Ref. [47]. Understanding the relations between these length
scales and their dependence on the preparation protocol is
an important task to be further addressed in a separate
report.
Concluding remarks and prospects.—In this Letter, we

showed that the distribution of low-frequency vibrational
glassy modes in several 3D models of structural glasses
follows a ω4 law. This scaling is observable by carefully
tuning the system size such that Goldstone modes are
suppressed. In addition, the sample-to-sample statistics of
MVFs was shown to be Weibullian, with scaling exponents
that are fully consistent with the ω4 law.
Our results also establish the existence of a preparation

protocol dependent localization length that characterizes
soft glassy modes and that the anharmonicity associated
with these modes is frequency and system size indepen-
dent. These are two of the key assumptions made in the
“Soft Potential Model" [26] that predicts the ω4 law for
soft glassy modes. It is desirable to extend our numerical
analysis to the validation of the more recent “reconstruction
picture” [28,29], in which interactions between different
localized excitations and anharmonicity give rise to the ω4

law for soft glassy modes.
We have only reported here results for 3D systems.

Preliminary results indicate that the ω4 law persists in the
density of states of 2D glasses of sizes L ≪ LDðđ ¼ 2Þ.

(a) (b)

(c) (d)

FIG. 5. (a) The mean rescaled MVFs depend on system size as
L−3=5, both for rapidly and slowly quenched samples, suggesting
the robustness of the ω4 law to different preparation protocols.
(b)–(d) Distributions of (b) MVFs ωmin, (c) athermal shear
modulus μ, and (d) participation ratio e measured in our slowly
and rapidly quenched solids as indicated by the legend. See text
for discussion.

(a) (b)

FIG. 4. (a) Spatial decay profile (see Ref. [32] for exact
definition) of the lowest-frequency mode amongst our entire
ensemble of minimal frequency modes with N ¼ 106. (b) The
ensemble lowest-frequency mode (only components larger than a
tenth of the mode’s maximal component are shown). On the x-y,
x-z, and y-z planes, the respective projections of the mode are
shown, allowing for a visual estimation of its spatial scale.

PRL 117, 035501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
15 JULY 2016

035501-4



However, we find that the Weibullian statistics of MVF
breaks down in 2D, as do the quasilocalization of lowest-
frequency modes and N invariance of their associated
anharmonicity. These issues will be addressed is a separate,
broader report.
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