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We show that in generic one-dimensional Hamiltonian lattices the diffusion coefficient of the maximum
Lyapunov exponent diverges in the thermodynamic limit. We trace this back to the long-range correlations
associated with the evolution of the hydrodynamic modes. In the case of normal heat transport, the
divergence is even stronger, leading to the breakdown of the usual single-function Family-Vicsek scaling
ansatz. A similar scenario is expected to arise in the evolution of rough interfaces in the presence of suitably

correlated background noise.
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Lyapunov exponents (LEs) are dynamical invariants that
provide a detailed characterization of low-dimensional as
well as spatiotemporal chaos [1]: they indeed allow
estimating the fractal dimension, the Kolmogorov-Sinai
entropy, and allow us to ascertain the extensivity of the
underlying dynamical regime. LEs are average quantities,
defined as the infinite-time limit of the so-called finite-time
Lyapunov exponents (FTLEs). Interestingly, also the tem-
poral fluctuations of FTLEs carry important information
that is ultimately encoded in yet another invariant: a
suitable large deviation function. Fluctuations help to shed
light on important phenomena such as intermittency,
strange nonchaotic attractors, and stable chaos [1].

In dissipative systems with many degrees of freedom, the
fluctuations of the largest FTLE have been investigated in
various numerical setups such as a shell model for the
energy cascade in turbulence [2], a cellular automaton [3],
molecular dynamics simulations [4], coupled-map lattice
models [5,6], and a variety of continuous-time models
[7,8]. In particular, in spatially extended systems like those
in Refs. [5,6,8], the dynamics of Lyapunov vectors, i.e.,
perturbation fields, is formally equivalent to the evolution
of rough interfaces in a noisy environment, the LE
corresponding to the velocity of the interface [9,10].
This relationship is essentially based on the interpretation
of the logarithm of the local amplitude of the perturbation
with the height £ (x, t) of a suitable interface. As a result,
the same “physics” can be found in two significantly
different contexts. In particular, the universality class of
roughening phenomena identified by the Kardar-Parisi-
Zhang (KPZ) equation [11] includes also the perturbation
evolution in spatially extended chaotic systems [9,10,12].

In spite of its broadness, the KPZ universality class does
not encompass Hamiltonian models [13,14]. Preliminary
studies revealed different critical properties and generically
attributed the anomalous scaling to long-range correlations
[13]. Later on, powerful methods for the characterization of
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large deviations revealed that extreme fluctuations of the
FTLE in the classical Fermi-Pasta-Ulam (FPU-f) chain
[15] correspond to atypical solutions of solitonlike and
chaotic-breather dynamics [6,16]. However, it is not clear
to what extent they are responsible for the anomalous non-
KPZ behavior.

In this Letter we study the diffusion coefficient D of the
maximum FTLE in two prototypical Hamiltonian lattices
(the FPU-B and the ®* models). Contrary to what is
observed in dissipative dynamics, where D vanishes in
the thermodynamic limit, here D diverges. Within the
rough-interface context, this behavior means that the
velocity of the interface does not self-average. Otherwise
said, the infinite-time limit (implied by the definition of the
LE) does not commute with the thermodynamic limit. This
is yet another example of how subtle the interrelations
between these two limits may be (see also the Hamiltonian
mean-field model, where an exchange of limits even
transforms a vanishing LE into a finite LE [17]; or stable
chaos [18], where the noncommutation of the two limits is
at the origin of a self-sustained irregular dynamics in
linearly stable environments). Here we show that the
divergence of the fluctuations originates from the long-
range spatiotemporal correlations that are naturally present
in Hamiltonian systems because of conservation laws
(notably energy conservation). A similar scenario is
expected to arise in the evolution of rough interfaces in
the presence of suitably correlated background noise.

Our results complement the pioneering work by
McNamara and Mareschal [19], who established a con-
nection between hydrodynamics and Lyapunov dynamics,
by analyzing the evolution of the Lyapunov vectors
associated to small LEs. Here we shed further light,
showing that hydrodynamics shapes the most unstable
direction as well.

Theory.—Given an infinitesimal perturbation &u(z)
pointing along the most unstable direction in tangent space
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(the so-called leading Lyapunov vector), we denote its
expansion factor over a time ¢ by e'. The ratio
A(t) =T'(r)/t, the so-called FTLE, is expected to fluctuate
because of the heterogeneity of the degree of instability
across phase space. The minimal way to gauge the
fluctuations of the FTLE is through the variance

22(1) = ((C(1) = ()1)?), (1)

where the angular brackets (- - -) denote an average over an
ensemble of trajectories, and (1) coincides with the LE
lim,_,,A(¢) under the assumption that there is only one
ergodic component for the energies considered.

The fluctuations of the FTLE are quantified by the
diffusion coefficient

e
D = lim=>, (2)
which is itself a dynamical invariant [i.e., independent of
the norm type used to compute A(7)]. In extended dynami-
cal systems the diffusion coefficient is expected to scale
with the system size L as D ~ L™7 [5,8], where y is called
the wandering exponent.

The scaling behavior of D can be better understood by
interpreting the logarithm of the local amplitude of the
perturbation |Su;| as the height of a (rough) surface [9,10]:
h; = In |6u;|. Once introduced, the auxiliary field ¢;(¢) =
hi(t) — h;(0), its spatial average ¢(r) = (1/L)>"E | ¢:(1)
corresponds to I'(7) [20], so that the FTLE coincides with
average velocity of the interface.

In the theory of roughening processes one observable
of great interest is the (squared) width of the interface

W(t) = <(¢,~ —@)2>, which, for self-affine interfaces,

satisfies the Family-Vicsek scaling ansatz
W? = L>*F(t/L%), (3)

where a and z are the usual roughness and dynamical
exponents, respectively, and F(u) = const for u > 1. The
validity of this relationship in the context of Lyapunov
dynamics in extended dissipative dynamical systems has
been repeatedly investigated [9,10,12,21,22], showing that
the leading Lyapunov vector falls within the universality
class of KPZ dynamics [11].

The observable y?> defined in Eq. (1) is, within the
surface framework, given by y%(¢) = ((¢p — (¢))?). For y? it
is legitimate to invoke again a scaling ansatz [§]

3= L2G(t/L7)(t/L7), (4)

where the explicit time dependence has been included to
stress the asymptotic linear growth of y? [G(u) = const for
u > 1]. As a result, the wandering exponent is [8]

y=2z2-2a, (5)

for any spatial dimension. In the case of chaotic dissipative
systems, y is universal. In fact, as the relationship with KPZ
dynamics holds @ = 1/2, z =3/2 in one dimension, so
that y = 1/2; analogously, y ~ 0.839 in two dimensions
[8]. In both cases y > 0 implies that the fluctuations of the
FTLE decrease upon increasing the system size, thereby
indicating that the LE self-averages in the thermody-
namic limit.

Models.—The only set of systems with spatiotemporal
(extensive) chaos where the correspondence with the KPZ
class does not apply is the important class of Hamiltonian
models [13]. We investigate two popular Hamiltonian
lattices: (i) the FPU-f model, defined by the evolution
equation 4i =F(qi1 — q:) — F(g; — gi-1) where
F(x) = x + x%, and by the tangent space dynamics Q; =
M (Qivy — Qi) +mi(Qiy — Q;), where Q; is the infini-
tesimal variation of ¢; and m; = 1 + 3(q; — q,_;)* is the
local multiplier; (ii) the ®* model, in which case

Gi=qir1—qi+9i-1—q;» and Q; = Qi —mQ; + Oiy,
where m; = 1 + 3¢?. In both cases the interface height is
defined as /;(r) = In|[Q2(r) + 03(1)]'/?|. Periodic boun-
dary conditions are always assumed and the equations are
integrated by using the McLachlan-Atela algorithm [23].
All simulations were carried out with the moderately
high energy density E/L = 5, which is above the strong
stochasticity threshold.

The scaling of the diffusion coefficient D with L has
been determined by integrating the equations in tangent
space and measuring y2, as defined by Eq. (1), for different
system sizes. The results for the ®* model are shown in
Fig. 1(a) after a proper rescaling to conform to the scaling
ansatz, Eq. (4). There we see that the agreement increases
upon increasing the system size with clear evidence that
7= 2. As for y, it is convincingly negative, but an accurate
estimate of the asymptotic value is problematic due to the
slow convergence with the system size. The effective
wandering exponent y.y(L), obtained by comparing the
data for L with that for L/2, is plotted in the inset in
Fig. 1(a). As a result, we can argue that y — ~ — 1.

The results for the FPU-f model are plotted in Fig. 1(b).
On the one hand, a robust estimate of z ~ 3/2 is found for
the whole set of system sizes considered in our simulations.
On the other hand, y varies with L and makes the estimate
of the asymptotic value even more troublesome than in the
previous case. The analysis of the effective wandering
exponent y.¢ (L), plotted in the inset in Fig. 1(b), suggests
that y is at least more negative than —0.25. Given the strong
finite-size corrections, we have estimated « independently,
from the scaling behavior of the structure factor
Y(k) = (|h.(1)|?), where h(t) is the Fourier transform
of the interface profile at time . The structure factor for
L = 32768, a fairly large lattice, is shown in Fig. 1(c)
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FIG. 1. Rescaled FTLE fluctuations for the ®* [panel (a)] and

FPU [panel (b)] models, according to the ansatz [Eq. (4)], for
sizes L = 256, 512, 1024, 2048, 4096. The derivative dy>/dt is
considered because of the faster temporal convergence to the
asymptotic results. The optimal collapse of the data sets for the
larger system sizes is achieved setting y = —0.97 and z = 2.15 in
(a) and y = —0.25 and z = 1.45 in (b). The insets show the
convergence of y, determined by comparing the sizes L and L/2.
In panel (c), the structure factor of the Lyapunov-vector surface of
the FPU model is plotted for L = 4096, 8192, 16384, and 32768
(see black, red, green, and blue lines). The logarithmic derivative
is plotted in the inset, adopting the same color coding.

where it appears power-law-like. By virtue of Parseval’s
theorem one expects X(k) ~ k~(2**1)_ The inset suggests
that there is a very slow convergence to @ =1 in the
thermodynamic limit. This leads us to conjecture the set of
exponents for the FPU-§ model: a =1, z=3/2, and
hence, from Eq. (5), the wandering exponent y = —1/2.
In sum, the relative fluctuations of the FTLE diverge with L
in both models, though with different y values.

Given the peculiarities found, we decided to deepen the
numerical analysis by looking at the overall issue in a
different way. More precisely, we have monitored the ratio
between the fluctuations of the FTLE and those of the
interface width,

R = y? /W2, (6)

From Egs. (3) and (4), this dimensionless observable is
expected to be independent of L if plotted versus the
rescaled time u = t/L*. In Fig. 2(b) we see that this is
indeed the case for the FPU-# model [there we have
assumed z = 1.4, not far from the value z = 1.45 estimated
from Fig. 1(b)]. There, we also see that R diverges linearly
for large ¢, while it grows as R~ /% at short times,
consistently with the scaling Ansitze in Egs. (3) and (4)
[24], see Ref. [8].

- - - 10
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FIG. 2. Evolution of R [see Eq. (6)] in the ®* [panel (a)] and
FPU [panel (b)] models, for L = 512, 1024, 2048, and 4096. R/ L
is plotted in the inset of panel (a). A good data collapse is
achieved for z = 1.4 for the FPU model.

A completely different scenario is instead found for the
®* model. The various curves reported in Fig. 2(a) do not
collapse onto one another (neither at short nor at long
times). Additionally the time dependence is linear all along
the entire range. A nice data collapse is obtained only after
rescaling R by L (see the inset). The only way we have
found to reconcile this result with the two initial scaling
hypotheses is by assuming the existence, for the ®* system,
of two different a exponents, @, and ay, in Egs. (4) and (3),

respectively, so that R ~ L2%~)(¢/L?). The observed
data collapse for the R curves implies a, = ay + 1/2. An
independent study of the scaling of W? points to ay, = 1 in
the thermodynamic limit, whereupon a,, = 3/2. As aresult,
the relationship [Eq. (5)] is still valid, once the proper « is
being invoked: y = z — 2a,,. This yields y = —1, in agree-
ment with the direct simulations in Fig. 1(a).

Stochastic model.—The study of the two Hamiltonian
models has revealed a diverging diffusion coefficient of the
FTLE fluctuations as well as two significantly different
scaling scenarios. Recent progress in the thermodynamic
properties of oscillator chains has shown that the two
models belong to different universality classes: Fourier law
is satisfied in the ®* model, while a divergence of transport
coefficients is found in the FPU-f system [25]. More
precisely, the hydrodynamic behavior of ®* is a pure
diffusion and therefore characterized by z = 2, while the
scenario is more complex in the case of FPU-type models,
where z depends on the symmetry of the interactions (see
Ref. [26]). Our results show that such a difference man-
ifests itself also in the context of Lyapunov dynamics.

In order to test to what extent the tangent-space dynamics
is determined by the correlation properties of the local
multipliers m;(t), we have studied the simple model

Sui(t + 1) = m;(0)[6u;y (1) + 6u; (1) + Sy (1)), (7)

where time is discrete and m;(r) is a stochastic term. It
corresponds to the tangent space evolution of a generic
coupled-map lattice. If m;(¢) is & correlated both in space
and time, the dynamics of #; = In|Su;| belongs to the KPZ
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universality class [9]. In contrast, for the ®* model we find
that the spectral density of the multipliers is

AR
- Bk*+ 0*’

(|7 (@) ?) (8)

up to some finite-size corrections (data not shown). The
form of the hydrodynamic fluctuations given by Eq. (8)
corresponds to diffusive transport [27]. Indeed, energy
fluctuations relax diffusively in the ®* model [25] and
this is also expected for other observables like the local
multipliers m;(¢). In Ref. [28], a simple recipe to generate a
stochastic process m; characterized by the spectral density
in Eq. (8) was proposed. Given a positive-defined field
m;(t), a pair of neighboring sites i, i+ 1 is randomly
selected and the conserved quantity E; = m;(t) + m; (1)
randomly redistributed over the two sites with a uniform
probability density in [0, E;] (so that detailed balance is
satisfied). A time unit corresponds to the performance of L
random moves.

The scaling behavior of y? for the model Eq. (7) is
reported in Fig. 3(a) (simulations have been performed for
an average E =Y ,E;/L equal to 2), where we see a
scenario quite similar to that of the ®* model with a y value
close to —1. The close correspondence is further strength-
ened by the analysis of R displayed in Fig. 3(b), which
confirms that the additional rescaling R — R/L is needed
to ensure a good data collapse.

Unfortunately, a simple recipe to generate a stochastic
process with the correlations expected for the FPU model is
not available. We nevertheless believe that there is com-
pelling evidence that the anomalous divergence of the
diffusion coefficient emerges from the space-time correla-
tion of the multipliers in tangent space, or, equivalently, of
the noise in the rough-interface picture. It is interesting to
notice that the anomaly is stronger (i.e., |y| is larger) in the
®* model which, thermodynamically, is known to be
characterized by ‘“normal” (finite) thermal conductivity.
The reason for this seemingly odd conclusion is that the
origin of the anomalous Lyapunov dynamics resides in the
hydrodynamic behavior of the multipliers: the normal
diffusion observed in the ®* model is slower than the
“anomalous” superdiffusion arising in the FPU-# context.

Large-deviation theory.—In order to fully appreciate the
role of FTLE fluctuations, it is convenient to introduce the
probability P(4,1, L) to observe 1 over a time ¢ in a system
of size L. The theory of large deviations predicts that
[29-31] (see also Ref. [1])

P(A,t, L)~ e SAL), (9)

where the entropy S(4, L) is a dynamical invariant which
has typically a quadratic minimum at (1) (the true LE). The
diffusion coefficient D is the inverse of the second
derivative of S(4,L) in A at A = (1) (see, e.g., Ref. [3]).
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FIG. 3. (a) Rescaled FTLE fluctuations for the stochastic model

in Eq. (7), according to the ansatz [Eq. (4)], for L = 256, 512,
1024, and 2048 (y = —1). (b) The ratio R plotted for the same
model and system sizes. The rescaled ratio R/L is plotted in the
inset.

Equivalently, one can look at the problem in terms of the
generalized LEs £(q), defined from the growth rate of gth
order moments [32,33]

£(g.L) = g limr " In(||du]?). (10)

The two representations are connected via a Legendre
transform [1]. Since, to lowest order in g [32],

L(q.L) = (4) +qD(L)/2+ O(¢*), (11)

a divergence of D with L implies the existence of a
singularity of dL(q)/dq at ¢ = 0. Preliminary computa-
tions of higher-order cumulants suggest that the divergence
is exclusive of the linear term in Eq. (11) due to the
presence of nonanalytic terms in the thermodynamic limit
of £(g, L). More refined computational efforts are required
to clarify this point.

Conclusions.—We have shown that in Hamiltonian
models the variance of the maximal FTLE diverges in
the thermodynamic limit. This follows from the slow,
hydrodynamic fluctuations that affect the local multipliers.
Given the universality classes identified while studying
heat conductivity [25], a similar scenario is expected for the
Lyapunov fluctuations. In particular, different scaling
exponents are expected in the asymmetric FPU-a model.
Interestingly, the divergence is stronger and qualitatively
different in models exhibiting normal transport such as the
®* model. In that case, the structure of the Lyapunov vector
surface is not self-affine (i.e., based on a single Family-
Vicsek scaling ansatz): two different @ exponents must be
introduced to describe the growth of the interface width and
sample-to-sample fluctuations, respectively. In consonance,
the structure factor (k) exhibits increasing fluctuations at
low k. Altogether, we expect the divergence of D to carry
over to two- and three-dimensional setups, where normal
diffusion is even more universal. At low temperatures the
hydrodynamic behavior competes with the intrinsic slow-
ness of the dynamics itself: whether this can lead to further
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anomalies is unknown. Also, we may conjecture the
existence of dissipative systems subject to certain
conservation laws that may lead to diverging FTLE
fluctuations.

In the context of roughening processes, the diverging
fluctuations reported here would manifest as a divergence
of the fluctuations of the interface velocity. In the past,
various noises with a slow decay of either spatial or
temporal correlations have been studied and different
scaling exponents introduced to characterize the interface
evolution [34] (see also Ref. [35]). However, to our
knowledge no systematic investigation of combined spa-
tiotemporal correlations has been carried out. This type of
combined correlations seems to be essential for the scenario
discussed in this Letter to occur.

Finally, regarding the physical meaning of a diverging
diffusion coefficient D, note this does not imply the
violation of the central limit theorem, as for any finite
system size D remains finite and thereby the LE well
defined. Nevertheless, intermittent phenomena in tangent-
space dynamics become increasingly important in the
thermodynamic limit. How large are the deviations from
a Gaussian approximation is not, however, clear: a com-
plete study of large deviations is required.
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