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Considerable work has recently been directed toward developing resource theories of quantum
coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This
criterion requires that all free operations in a given resource theory be implementable by a unitary evolution
and projective measurement that are both free operations in an extended resource theory. We show that
all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further
characterize the physically consistent resource theory of coherence and find its operational power to be
quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-
covariant incoherent operations as a natural generalization of the physically consistent operations.
Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-
covariant operations, and we show that these conditions also hold for other well-known classes of
incoherent operations.
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Resource theories offer a powerful framework for under-
standing how certain physical properties naturally change
within a physical system. A general resource theory for a
quantum system is characterized by a pair (F ,O), where F
is a set of “free” states and O is a set of “free” quantum
operations. Any state that does not belong to F is then
deemed a resource state. Entanglement theory provides a
prototypical example of a resource theory in which the free
states are the separable or unentangled states, and the free
operations are local operations and classical communica-
tion (LOCC) [1,2]. Other examples includes the resource
theories of athermality [3,4], asymmetry [5–7], and non-
stabilizer states for quantum computation [8].
Any pair (F , O) defines a resource theory, provided the

operations of O act invariantly on F : i.e., EðρÞ ∈ F for all
ρ ∈ F and all E ∈ O. However, this is just a mathematical
restriction placed on the maps belonging to O. It does not
imply that E ∈ O can actually be physically implemented
without generating or consuming additional resources. The
issue is a bit subtle here since in quantum mechanics,
physical operations on one system ultimately arise from
unitary dynamics and projective measurements on a larger
system, a process mathematically described by a Stinespring
dilation [9]. A resource theory (F ,O) defined on system A is
said to be physically consistent if every free operation E ∈ O
can be obtained by an auxiliary state ρ̂B, a joint unitary UAB,
and a projective measurement fPkgk that are all free in an
extended resource theory (F 0,O0) defined on a larger system
AB, for which F ¼ TrBF 0 ≔ fTrBðρABÞ∶ρAB ∈ F 0g.
Arguably, a physically consistent resource theory is

more satisfying than an inconsistent one. Indeed, without

physical consistency, the notions of “free” and “resource”
have very little physical meaning since resources must
ultimately be consumed to implement certain operations
that are supposed to be free. As an analogy, if a car wash
offers to wash your car for free, but only after you go across
the street and purchase an oil change from their business
partner, is the car washing operation really free?
At the same time, physically inconsistent resource

theories can still be of interest. In open quantum systems,
for instance, one may not care about whether the interacting
environment consumes resources, and even when working
with closed systems, it is still valuable to consider relax-
ations of physical consistency. Consider again entangle-
ment. LOCC renders a physically consistent resource
theory of entanglement since any LOCC operation can
be implemented using only local unitaries and projections.
However, often one considers more general operational
classes such as separable operations (SEP) or the full class

TABLE I. The class of PIO introduced in this Letter represents
the coherence analog to LOCC in terms of being a physically
consistent resource theory. The previously studied SIO, IO, and
MIO represent relaxations of PIO in the same way that SEP and
NE operations are relaxations of LOCC. We further introduce the
new class of DIO.

Operations

Resource Physically Consistent Physically Inconsistent

Entanglement LOCC SEP, NE
Coherence PIO SIO, DIO, IO, MIO
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of nonentangling operations (NE) [10]. The motivation for
using SEP is that it possesses a much nicer mathematical
structure than LOCC without being too much stronger. In
contrast, one may turn to NE when seeking maximal
strength among all operations that cannot generate entan-
glement. Nevertheless, despite being appealing objects of
study, both SEP and NE represent physically inconsistent
resource theories of entangled (see Table 1).
In this Letter, we analyze some of the recently proposed

resource theories of quantum coherence [11–20]. We
observe that none of these offer a physically consistent
resource theory, and the true analog to LOCC in coherence
theory has been lacking. We identify this hitherto missing
piece as the class of physically incoherent operations (PIO),
and we provide its characterization. The operations pre-
viously used to study coherence are much closer akin to
SEP and NE in entanglement theory, and we clarify what
sort of physical interpretations can be given to these
operations.
While we find that PIO allows for optimal distillation of

maximal coherence from partially coherent pure states in
the asymptotic limit of many copies, the process is strongly
irreversible. That is, maximally coherent states cannot be
diluted into weakly coherent states at a nonzero rate, and
they are thus curiously found to be the least powerful
among all coherent states in terms of asymptotic convert-
ibility. Given this limitation of PIO and its similar weakness
on the finite-copy level, it is therefore desirable from a
theoretical perspective to consider more general operations.
Consequently, we shift our focus to the development of
coherence resource theories under different relaxations of
PIO. To this end, we introduce the class of dephasing-
covariant incoherent operations (DIO), which to our knowl-
edge has never been discussed before in literature. We
provide physical motivation for DIO and show that these
operations are just as powerful as maximal incoherent
operations (MIO) when acting on qubits. Detailed proofs of
our results as well as a more detailed comparison between
different incoherent operational classes can be found in an
accompanying paper [21].
Quantum coherence has traditionally referred to the

presence of off-diagonal terms in the density matrix. For
a given (finite-dimensional) system, a complete basis
fjiigdi¼1 for the system is specified, accounting for all
degrees of freedom, and a state is said to lack coherence (or
be incoherent) with respect to this basis if and only if its
density matrix is diagonal in this basis [22,23]. We will
refer to this as a basis-dependent definition of coherence,
and accordingly, a basis-dependent resource theory of
coherence identifies the free (or incoherent) states I as
precisely the set of diagonal density matrices in the fixed
incoherent basis [24]. We frequently use the hat notation ρ̂
to indicate that the state is incoherent.
When it comes to identifying the free (or incoherent)

operations, different proposals have been made. We focus

on the following three operational classes. A completely
positive trace-preserving (CPTP) map E is said to be a MIO
if EðρÞ ∈ I for every ρ ∈ I [11,25], an incoherent oper-
ation (IO) if E has a Kraus operator representation fKngn
such that KnρK

†
n=Tr½KnρK

†
n� ∈ I for all n and ρ ∈ I [13],

and a strictly incoherent operation (SIO) if E has a Kraus
operator representation fKngn such that KnΔðρÞK†

n ¼
ΔðKnρK

†
nÞ for all n [17,19], where Δ is the completely

dephasing map Δ∶ρ↦
P

d
i¼1 jiihijρjiihij.

In each of these approaches, the allowed unitary oper-
ations and projective measurements are the same. The set of
all incoherent unitary matrices forms a group which we
denote by G. For a d-dimensional system, the group G
consists of all d × d unitaries of the form πu, where π is a
permutation matrix and u is a diagonal unitary matrix (with
phases on the diagonal). We denote by N ≅ Uð1Þd the
group of diagonal unitary matrices and by Π the group of
permutation matrices. Note that N is a normal subgroup of
G, and G ¼ N⋊Π is the semidirect product of N and Π.
Likewise, an incoherent projective measurement consists of
any complete set of orthogonal projectors fPjg with each
Pj being diagonal in the incoherent basis.
It is crucial that a physical resource theory possess a

well-defined extension to multiple systems if one allows
for generalized measurements, simply because the latter
describes a process that is carried out on more than one
system. A natural requirement for any physical resource
theory of coherence is that it satisfies the no superactivation
postulate; that is, if ρ and σ lack quantum coherence, then so
must the joint state ρ ⊗ σ. Combining the basis-dependent
definition of coherence with the no superactivation postulate
immediately fixes the structure of multipartite incoherent
states. If fjiiAgdAi¼1 and fjjiBgdBj¼1 are defined to be the
incoherent bases for systems A and B, respectively, then
the superactivation postulate forces fjiiAjjiBgdA;dBi;j¼1 to be the
incoherent basis for the joint system AB.
The fact that the incoherent basis takes tensor product

form when considering multiple systems has strong conse-
quences for the physical consistency of incoherent oper-
ations. Every physical operation on some system, say A, can
be decomposed into a three-step process as depicted in
Fig. 1. If this operation is free within a physically consistent
framework, then (i) a joint incoherent unitaryUAB is applied
immediately prior to time t1 on the input state ρA and some
fixed incoherent state ρ̂B, (ii) an incoherent projective
measurement is applied immediately prior to time t2 with
system B encoding the measurement outcome as a classical
index, and (iii) a classical processing channel is applied to
the measurement outcomes immediately prior to t3. It can be
assumed without loss of generality that the projective
measurement in step (ii) consists of rank-one projectors
Pj since the action of more general projections can be
recovered by coarse graining in step (iii). Also, note that at
time t2, the joint state is a quantum-classical (QC) state
ωAB ¼ P

t
j¼1 ρA;j ⊗ jjihjjB, where
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ρA;j ¼ TrB½ðIA ⊗ PjÞUABðρA ⊗ ρ̂BÞU†
AB�:

With the classical processing, the final state of system A at
time t3 is given by EðρAÞ ≔

P
t0
k¼1 ρ

0
A;k ⊗ jkihkj, where

ρ0A;k ¼
P

t
j¼1 pkjjρA;j for some channel pkjj. We define the

class of PIO to be the set of all CPTP maps E that can be
obtained in this way.
Proposition 1: A CPTP map E is a physically inco-

herent operation if and only if it can be expressed as a
convex combination of maps each having Kraus operators
fKjgrj¼1 of the form

Kj ¼ UjPj ¼
X
x

eiθx jπjðxÞihxjPj; ð1Þ

where the Pj form an orthogonal and complete set of
incoherent projectors on system A and πj are permutations.
Proof.—First, consider when ρ̂B is a pure state ρ̂B ¼

jy0ihy0j. A joint incoherent unitary on AB will take the form
UAB¼

P
xye

iθxy jπ1ðxyÞπ2ðxyÞihxyj, where (π1ðxyÞ; π2ðxyÞ)
is the output of a permutation π applied to (x, y). To obtain a
Kraus operator representation of the map, we decompose the
incoherent projective measurement into a rank-one projec-
tion in the incoherent basis fjyig. Upon projecting onto jyi,
the (un-normalized) state of system A is

hyjUABðρA ⊗ jy0ihy0jÞU†
ABjyi ¼ Uðy0Þ

y Pðy0Þ
y ρAP

ðy0Þ
y ðUðy0Þ

y Þ†

where Uðy0Þ
y ¼ P

x∈Sðy
0Þ

y
eiθxy0 jπ1ðxy0Þihxj þWðy0Þ

y . Here, we

take x ∈ Sðy
0Þ

y iff π2ðxy0Þ ¼ y, the operator Wðy0Þ
y is suitably

chosen such that Uðy0Þ
y is unitary, and Pðy0Þ

y ¼ P
x∈Sðy

0Þ
y
jxihxj.

It is obvious that the set fKðy0Þ
y ¼ Uðy0Þ

y Pðy0Þ
y gy forms a

complete set of Kraus operators which characterizes the
measurement. If ρ̂B were originally a mixed state
ρ̂B ¼ P

y0py0 jy0ihy0j, then a complete set of Kraus operators

is given by f ffiffiffiffiffiffipy0
p Kðy0Þ

y gy;y0 where again each Kraus operator
has the form Kðy0Þ

y ¼ Uðy0Þ
y Pðy0Þ

y . ▪
From the proposition above, it is easy to see that

PIO ⊂ SIO ⊂ IO ⊂ MIO, with PIO being a strict subset

of the other three (see Fig. 2). To understand the physical
differences between these operations, let us return to Fig. 1
and for the sake of the following discussion, assume that the
measurement between times t1 and t2 is a rank-one
projection into the incoherent basis fjjigdBj¼1. Then, the joint

state at time t2 takes the form
PdB

j¼1 KjρAK
†
j ⊗ jjihjjB for

Kraus operators fKjgdBj¼1. Suppose now that the input ρ̂A is
incoherent so that initial joint state ρ̂A ⊗ ρ̂B is also incoher-
ent. If the final state at time t3 is always incoherent,
regardless of the coherence generated during the inter-
mediate times, then the operation is a MIO. If the QC
joint state at time t2 is always incoherent, then the
operation is an IO. If the joint state at time t1 is always
incoherent, then the operation is a PIO, provided the
subsequent projective measurement is incoherent.
Conversely, every IO or MIO operation can be imple-
mented using the scheme of Fig. 1 by taking the size of
system B to be sufficiently large. Where do SIO oper-
ations fit in this picture? They are like IO in that the
joint state is always incoherent at time t1, with the
added constraint that UAB has the form UAB ¼P

i;kckijπkðiÞihij ⊗ jkih0j, for different permutations
πk [19,21].
The class PIO is a rather restricted class of operations. For

instance, suppose that jψi and jϕi are any two pure states
with rank ½ΔðψÞ� ¼ rank½ΔðϕÞ�. Then, jψi can be converted
to another jϕi using PIO if and only if ΔðψÞ and ΔðϕÞ are
unitarily equivalent. The power of PIO is improved some-
what on the many-copy level. One can easily show that a
state jψi can be asymptotically converted via PIO into the
maximally coherent qubit state jþi ¼ ffiffiffiffiffiffiffiffi

1=2
p ðj0i þ j1iÞ at a

rate equaling the von Neumann entropy of the state
Δðjψihψ jÞ, which is optimal [21]. On the other hand, the
asymptotic conversion rate of jþi into any weakly coherent
state jψi is strictly 0. The proof of this fact reveals an
interesting relationship between quantum coherence and
communication complexity in LOCC. Observe that for
any PIO transformation jψi → jφi, there exists a zero
communication LOCC protocol that transforms
jψ ðmcÞi → jφðmcÞi, where jψ ðmcÞi and jφðmcÞi are maximally

FIG. 1. This figure depicts the general process of implementing
an incoherent operation on the joint system AB whose reduced
action on A is the incoherent CPTP map ρA↦EðρAÞ. A second
system B is introduced in an incoherent state ρ̂B. Both the unitary
UAB and projective measurement are coherence nongenerating.
All measurement outcomes are stored in a classical register of
system B so that the joint system is in a QC state at time t2. Only
maps E implemented in this way are physically consistent within
a resource-theoretic picture.

FIG. 2. Heuristic comparison between the five classes of
incoherent operations MIO, DIO, IO, SIO, and PIO.
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correlated extensions of jψi and jφi; i.e., jψ ðmcÞi ¼P
i

ffiffiffiffiffi
pi

p jiiiAB when jψi ¼ P
i

ffiffiffiffiffi
pi

p jiiA. However, the
asymptotic transformation jþðmcÞi → jφðmcÞi requires non-
zero communication whenever jφðmcÞi is not a product state
or maximally entangled [26,27]. Hence, rather bizarrely, in
PIO theory the maximally coherent state is the weakest as it
cannot be transformed into any other state that is not related
by an incoherent unitary.
This result demonstrates once again that care is needed

when speaking of a maximal resource. While the state jþi
has maximum value according to all previously proposed
coherence measures [13], its operational status as a maxi-
mal resource depends crucially on the allowed operations.
This is similar to multipartite entanglement theory where
the state jGHZi ¼ ffiffiffiffiffiffiffiffi

1=2
p ðj000i þ j111iÞ maximizes cer-

tain entanglement measures (such as the tangle [28]), yet in
certain operational settings it behaves weakest (such as
being resistent to entanglement loss [29]).
The weakness of PIO means that the constraint of

physical consistency is too strong if one wishes to have
a less degenerate resource theory of coherence. This
provides motivation to relax the constraint of physical
consistency and to consider more general resource theories
such as SIO, IO, or MIO. We now turn to one such theory
that has not been previously discussed, but in some sense it
is the most natural one to consider.
Dephasing-covariant incoherent operations.—The fam-

ily of DIO consists of all maps that commute withΔ. Recall
that, in general, for a collection of operations T, a CPTP
map E is said to be T covariant if ½E; τ� ¼ 0 for all τ ∈ T.
DIO can be seen as a natural extension of PIO in light of the
following theorem, whose proof is given in Theorem 27
of Ref. [21].
Theorem 2: (a) Let G be the group of incoherent

unitaries. Then, ½U;Δ� ¼ 0 iff U ∈ G, where UðρÞ ≔
UρU†. (b) A CPTP map E is G covariant iff

EðρÞ ¼ q1ρþ
q2

d − 1
½I − ΔðρÞ� þ q3

d − 1
½dΔðρÞ − ρ� ð2Þ

for some qi ≥ 0 with
P

3
i¼1 qi ¼ 1. (c) A CPTP map E is

PIO covariant iff it has the form of Eq. (2) with q2 ¼ 0.
From part (c) of Theorem 2, the commutant of PIO

consists of the family of channels ΔλðρÞ ≔ ð1 − λÞρþ
λΔðρÞ for λ ∈ ½0; 1�. The class DIO therefore generalizes
PIO in that it is largest operational class sharing the same
commutant as PIO.
Operational covariance is an important physical property

as it describes an order invariance in performing a two-step
process. DIO are of particular interest when observing how
the probabilities pi ¼ hijρjii transform under a map E. If E
is DIO, then an experimenter can put ρ through any channel
Δλ before applying E without changing the probabilities pi.
Note that DIO can also be seen as an extension of SIO to
general channels.

What is the operational power of DIO? While we leave a
thorough investigation of the this question for future work,
here we just consider the task of transforming one qubit
state ρ into another σ. It turns out that all classes of
incoherent operations behave equivalently for this task, and
in fact, state convertibility depends on just two incoherent
monotones. The first is the robustness of coherence [30]
and is defined as

CRðρÞ ¼ min
t≥0

�
t

���� ρþ tσ
1þ t

∈ I ; σ ≥ 0

�
:

Here, we introduce a new type of robustness measure that
we call the Δ robustness of coherence:

CΔ;RðρÞ ¼ min
t≥0

�
t

���� ρþ tσ
1þ t

∈ I ; σ ≥ 0;Δðσ − ρÞ ¼ 0

�
:

While CR is a monotone under MIO in general, for qubits
CΔ;R is also a MIO monotone. These two measures
completely characterize qubit state transformations, as
proven in Theorem 26 of Ref. [21].
Theorem 3: For qubit state ρ and σ, the transformation

ρ → σ is possible by either SIO, DIO, IO, or MIO if and
only if both CRðρÞ ≥ CRðσÞ and CΔ;RðρÞ ≥ CΔ;RðσÞ.
Already in qutrit systems, state transformations exist that

are possible by MIO but not either IO or DIO [21].
Recently, Bu and Xiong have demonstrated a state trans-
formation that can be performed by DIO but not IO [31].
While it is easy to construct IO maps that are not DIO, it
remains an open question whether or not there exist state
transformations that can be implemented by IO but not by
SIO or even DIO.
In conclusion, we have introduced a criterion of physical

consistency for a general quantum resource theory. When
applied to quantum coherence, the class PIO emerges as the
physically consistent resource theory of coherence. In light
of PIO’s sharply limited abilities, it is desirable to enlarge the
free operations. This desire may even be experimentally
motivated if one is not be concerned with physical imple-
mentations but instead just wants to know what can be
accomplished with a black box that performs SIO, IO, DIO,
or MIO. Because of this, one may contest that resource
theories based on the latter operations are indeed physical
resource theories. But, such a statement should be accom-
panied by a precise definition of what it means for a resource
theory to be physical.We have offered one such definition in
this Letter and hope it stimulates further discussion on the
physical meaning of coherence resource theories.
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Note added.—Recently, we became aware of independent
work by Marvian and Spekkens [32], where the physical
meaning of incoherent operations is analyzed and the class
of dephasing-covariant incoherent operations is presented.
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