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Based on the assumption that the time evolution of a sample observed by computed tomography requires
many less parameters than the definition of the microstructure itself, it is proposed to reconstruct these
changes based on the initial state (using computed tomography) and very few radiographs acquired at fixed
intervals of time. This Letter presents a proof of concept that for a fatigue cracked sample its kinematics can
be tracked from no more than two radiographs in situations where a complete 3D view would require
several hundreds of radiographs. This 2 order of magnitude gain opens the way to a “computed” 4D
tomography, which complements the recent progress achieved in fast or ultrafast computed tomography,
which is based on beam brightness, detector sensitivity, and signal acquisition technologies.
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Away from medical and biological applications [1], 3D
imaging has revolutionized materials science [2–4]. From
imaging aiming at visualization to a more quantitative
assessment of material morphology, from synchrotron
facilities to lab-scale equipment, from several-hour scans
to ultrafast acquisitions lasting no more than a fraction of a
second, x-ray computed tomography is becoming an easily
accessible, user-friendly, high-performance technique. For
applications such as metrology and nondestructive testing,
it is also becoming much more common in industry.
In recent years, one striking trend is the recourse to 4D

imaging to track in time the microstructure of a sample
[4–6]. The fantastic achievements (e.g., tomography of
metal solidification [5] or even of live flying insects [7])
have been made possible only through the development of
fast data acquisition techniques.
4D imaging comes with a huge data flow that suggests to

follow similar approaches as those developed for movies.
Storing every single time frame on its own is highly
redundant. The (tþ 1) frame is usually very close to the
(t) frame, and, hence, storing the complete (t) frame and the
“sparse” difference between times (tþ 1) and (t) requires
much less data thanboth images independently, as evidenced
in movie compression standards [8]. Based on a similar
observation, Ref. [9] recently proposed denoising strategies
with subset-based restoration techniques in 3D plus time in
order to compensate for themissing information due to fewer
projections. The efficiency of movie compression lies in the
“sparsity” of the difference (especially when motion is
accounted for) that has to be described in a suited language.
Pushing the analogy into the field of tomography suggests
that after the full 3D state of a sample in its initial state has
been acquired, it is possible to reconstruct only the
differences between two consecutive 3D images from many
less projections. The present Letter aims to explore this
route, whereby an enhanced 4D rate would be obtained

algorithmically through a specific reconstruction rather than
from the acquisition equipment. Only a single time step is
considered in the present Letter while further indications for
4D tomography are given in the SupplementalMaterial [10].
In practice, both software and hardware strategies should be
combined rather than opposed to reach extreme time
resolutions.
Tomography consists of computing the 3D image fðxÞ,

such that for a large set of directions θ, the projection (i.e.,
the integral of the x-ray absorption coefficient) matches
the acquired projection pðr; θÞ (i.e., the cologarithm of the
beam intensity acquired at pixel r on the detector, normal-
ized by the beam intensity at the same detector position
without a sample)

ΠθfðxÞ ¼ pðr; θÞ; ð1Þ

where Πθ is the projection operator.
Mathematically, the reconstruction problem corresponds

to a Radon transform relating the 3D image fðxÞ to pðr; θÞ
that is to be inverted. Solving for fðxÞ from pðr; θÞ is a
well-mastered problem for which different algorithms are
known with their respective merits [14]. In discrete form,
the sampling in angle θ should be chosen such that the
maximum displacement of a voxel in fðxÞ between two
consecutive angular positions should be smaller than a
detector pixel size, thus, leading to a number of angles
proportional to the diameter of the sample (measured in
detector pixels). Hence, a tomographic image whose
cross section is Nx × Nx pixels with, e.g., Nx ¼ 1000,
requires usually about Nθ ≈ 1600 projections. Algebraic
reconstruction techniques can help reduce Nθ, although it
cannot be less than Nx without further assumptions on the
image texture.
As a side remark, let us note that prescribing further

constraints on the to-be-reconstructed image, such as the
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discreteness of gray levels [15] down to binary images
[16,17], sparse nonzero pixels [18], or a sparse boundary
between constant value domains [19], may constitute a very
efficient way of reducing the number of needed projections,
compensating for a lack of projection data with specific
a priori assumptions. In contrast, the present Letter aims to
address arbitrary images.
Many different scenarios may be considered for describ-

ing the time evolution of a studied sample, a generic
category of which is motion, including deformation. One
classical tool used to quantitatively study such an evolution
is digital volume correlation (DVC) [20,21], an extension
to 3D images of digital image correlation [22]. This
technique consists of registering two 3D images acquired
(or reconstructed) at different times, t0 and t1, by account-
ing for a displacement field uðx; t1; t0Þ. Assuming the
image texture has only been subjected to a geometrical
transformation, the following DVC functional operating on
an arbitrary displacement field vðxÞ is introduced

T DVC½v� ¼
Z

½fðx; t0Þ − f(xþ vðxÞ; t1)�2dx: ð2Þ

Global DVC [23] further constrains the displacement field
to be a linear combination of a chosen set of fields φiðxÞ for
i ¼ 1;…; Nv,

vðxÞ ¼
X
i

viφiðxÞ: ð3Þ

A general example of kinematic bases well suited to
mechanical modeling is those used in the framework of
the finite element method. A mesh supporting finite
element shape functions can be used, thereby ensuring
displacement continuity (higher regularity can be chosen
according to the shape function order). Finally, the dis-
placement field is obtained from the minimization of the
above functional [22]

uDVCðx; t1; t0Þ ¼ ArgminvðT DVC½v�Þ ð4Þ

with respect to vector v gathering all unknown amplitudes
vi. Let us stress that the number of parametersNv needed to
describe the kinematics is always much lower than the
number of voxels in the 3D images, opening the way to
reducing the number of projections.
Because the reference state is typically the rest state, time

is available for carrying out a complete 3D image at time t0
using as many projections as needed to obtain fðx; t0Þ.
For later times, only a few projections are assumed to be
available, which would not be sufficient to reconstruct
the corresponding 3D volume. For any displacement field
vðxÞ, the full 3D image fðx; t0Þ is advected to a deformed
state that should be compared with known projections.
Registration is now evaluated from the projection-based
residuals only

T P-DVC½v� ¼
Z

fΠθf½x − vðxÞ; t0� − pðr; θ; t1Þg2dx; ð5Þ

and the Eulerian displacement field is the minimizer of this
functional

uP-DVC ¼ ArgminvðT P-DVC½v�Þ: ð6Þ

Because an accurate computation of the projected deformed
volume is needed, this approach is not easily extendable to
“local tomography”.
Such an approach (referred to as P-DVC in the following)

was originally proposed in Ref. [24] and tested on a simple
geometrywhere the strainmagnitudewasvery small so that a
rigid bodymotion revealed to be a fair approximation. It was
observed that although the basic principles of the method-
ology were sound, the uncertainty of the measured displace-
ment field was larger along the boundaries of the solid
because the mesh had to strictly enclose the actual sample
and because at the boundaries, the phase contrast effects are
present although neglected in the reconstruction. Moreover,
it was also noticed that fine meshes led to numerical
instabilities due to ill-conditioning. Thus, it is legitimate
to askwhether themethodwould resist amuchmore difficult
test involving a complex kinematics and requiring a
fine mesh.
To make the problem well-posed, the effective number of

degrees of freedom has to be reduced, yet it is important to
be able to deal with a fine mesh to precisely account for the
sample geometry and kinematics. One way to satisfy these
two opposite requirements is to consider soft Tikhonov
regularization [25]. This implies a penalty to be added to
the functional T DVC as the displacement field departs from
an expected property. Classically, terms like the amplitude
of the displacement ∥u∥ or of the norm of its gradient are
used, although they introduce unphysical bias. It is pre-
ferred to introduce a penalty to deviations from the solution
to a homogeneous elastic problem [11,26,27]. Introducing
the (infinitesimal) strain tensor ε ¼ ð1=2Þ½∇uþ ð∇uÞt�,
Hooke’s tensor C that relates stress σ and strain
σ ¼ C∶ε, the balance equation in the absence of body
forces ∇ · σ ¼ 0 shows that the elastic displacement field
obeys the second order homogeneous differential equation
∇ ·C∶∇v ¼ 0. The choice is made to introduce a penalty
on the quadratic norm of the left member of this equation
referred to as the equilibrium gap, which reads

T reg½v� ¼
Z

∥∇ · C∶∇v∥2dx: ð7Þ

Adding the two contributions T P-DVC and T reg naturally
selects a length scale. To make it more explicit and, hence,
easy to tune, a specific displacement orientationw0 and wave
vector k0 are chosen. Based on the trial displacement field
v0ðxÞ ¼ w0 expðik0 · xÞ, the total functional is written as
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T tot½v� ¼
T P-DVC½v�
T P-DVC½v0�

þ ðjk0jξÞ4
T reg½v�
T reg½v0�

: ð8Þ

The meaning of regularization length ξ stems from the
above expression. Namely, at long wavelengths, T P-DVC is
dominant, and, hence, image registration determines the
displacement, whereas at short wavelengths, the regulari-
zation length produces a smooth and differentiable dis-
placement field. If a large ξ is not faithful to reality then
the residuals will display a large value, motivating for
lowering ξ down to values such that the residuals are
comparable with the residual level observed for the
reference image where the displacement is null. A much
more extensive discussion on regularization is provided in
the Supplemental Material [10].
Let us stress that the above regularization does not

require the specimen to strictly obey linear elasticity.
Rather, it may be seen as a filter that dampens abrupt
displacement gradients with reference locally to the sol-
ution to an elastic problem. Let us note that a viscous fluid,
a viscoelastic solid, or a material exhibiting plasticity,
viscoplasticity, or a damage behavior would all locally
display an incremental relationship between strain and
stress rates that has the same algebraic form as that of
an elastic problem, with the difference of being spatially
heterogeneous. Therefore, at the expense of being locally
less precise than using a complete mechanical modeling,
the above filter appears to be very generic. It is to be noted
that the limit of an infinite regularization length ξ is well
defined; namely, the problem consists of solving for the
minimization of T P-DVC½v�, Eq. (5), for v in the regulari-
zation kernel, T reg½v� ¼ 0. The elastic problem itself is
well-posed once the boundary conditions are set, and,
hence, the problem reduces precisely to the determination
of the boundary conditions. The regularization length ξ can
also be tuned down to small values comparable to the
element size so that regularization is essentially deacti-
vated. In the first limit, the number of effective degrees of
freedom is that accounting for the boundary conditions
(i.e., nodes on the surfaces where displacement is to be set),
whereas in the second one, all nodes of the mesh have an
unknown displacement vector. The limitation of the latter
case is that the conditioning of the problem will get poorer
as ξ decreases, and a possible remedy would imply an
increase of the number of needed projections. Yet, for a
very small size such as ξ ¼ 10 voxels, the number of
effective independent degrees of freedom is of the order of
300 times less than the number of voxels, thus, potentially
leading to more than 2 orders of magnitude gain in
the number of projections. The effect of tuning the
regularization length is illustrated in the Supplemental
Material [10].
The following example describes the application of the

proposed strategy to a real test case in order to demonstrate
that the above strategy works with no more than two

projections and this for a specimen containing a crack
where a very fine mesh is to be utilized.
A cast iron sample containing well-dispersed 50-μm

nodular graphite particles was subjected to cyclic loading
so that a fatigue crack propagated throughout a large
portion of the cross section. The test was performed in situ
at the European Synchrotron Radiation Facility (ID19
beam line, 60-keV energy) so that a series of tomographic
images could be acquired at different stages of loading
and/or crack growth.
The region of interest size is 1.67 × 1.72 × 2.59 mm3 or

330 × 340 × 512 voxels, with a voxel size chosen to be
5.06 μm. A full reconstruction requires Nθ ¼ 600 projec-
tions. Several volumes were imaged at different load levels
(50, 100, and 140 N). In the following, the selected pair of
states is chosen after 30 000 cycles (close to failure that
occurred after 50 000 cycles). The reference state is chosen
at a small but nonzero tensile load of 12 N to cancel out
possible plays of the tensile stage. The deformed state was
that obtained for the highest load level (i.e., 140 N) for the
test to be discriminating.
The trace of the crack was visible on the reference state

of the sample, and, hence, it was possible to segment the
crack and produce a fine mesh where the two crack faces
were separated. Figure 1 shows the mesh superimposed
onto the microstructure. It consists of four-noded tetrahe-
dron (i.e., T4) elements with about 2100 nodes and 8500 T4
elements. At the crack tip, the mesh was refined with
element sizes down to 15 voxels. Alternatively, an
eXtended Finite Element Method [12] strategy could have
been used.
The minimization of the total functional based on

projections is considered. The limit of the regularization
length ξ tending to infinity is selected so that the only

FIG. 1. Nodular graphite cast iron sample and superimposed
fine mesh. The sample is in its reference state for a 12-N
tensile load.
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unknowns are the boundary conditions along the top and
bottom faces. The latter sections are moreover considered
as rigid so that only 12 unknowns remain to be determined.
The number of projection directions (chosen to be
perpendicular) that are considered is Nθ ¼ 2. Let us stress
that imaging the entire volume required more than 2 orders
of magnitude more numerous radiographs, Nθ ¼ 600.
The determination of the displacement field was

obtained from the minimization of the functional T tot
using a Gauss-Newton procedure. Convergence was
observed to be reached within about five iterations only.
One way to evaluate the quality of the procedure is to

consider the difference between the two projection images
whose quadratric norm is the integrand of Eq. (5). These
differences called “projection residuals” are shown in
Fig. 2. Qualitatively, it is observed that most features of
the projections have disappeared in the residuals, but the
projection of the crack whose morphology is only approx-
imately captured by the mesh and where phase contrast
effects—not modeled in the procedure—are expected.
Quantitatively, the gauge to interpret faithfully the level
of residuals is provided by applying the P-DVC procedure
to a deformed state that is chosen as the reference. The
displacement is identically null, yet the projection of the
reconstruction in the two chosen directions is never exactly
equal to the recorded projections because of acquisition
imperfections as well as reconstruction or projection
biases. These baseline residual levels amount to a signal-
to-noise ratio (SNR) of about 31.5 dB for the projections.
The same estimate for the actual deformed sample leads to
a SNR ≈ 30 dB, which is only about 1.5 dB lower. Hence,
reconstruction, projection, and interpolation are responsible
for most of the remaining residuals, thereby validating the
registration process.
The initial claim was that the proposed technique would

allow us to track the entire 3D volume although only
two projections were used. In the discussed example, the
entire set of 600 projections had been acquired so that
one may directly compare the reference volume advected
by the estimated P-DVC displacement field and the direct
reconstruction of the deformed volume. These two volumes

and their difference are shown in Fig. 3. The difference
between the volumes reveals mostly reconstruction artifacts
that impact differently the two procedures and slight
inaccuracies in the description of the crack geometry from
segmentation and meshing. The SNR estimated on the
reconstructed volume amounts to 24 dB, to be compared to
25 dB when the displacement field issued from standard
DVC (based on volumes), and 30 dB when the proposed
P-DVC is applied to the reference volume itself, and the
displacement field (that should ideally be 0) is used to
“correct” the volume. Similarly, the rms difference between
displacement fields obtained from P-DVC and standard
DVC amounts to 0.18 voxel. The Supplemental Material
[10] presents additional details on the influence of the
chosen reconstruction procedure, mesh fineness, or regu-
larization length for this experimental example.
It has been shown that considering (even complex)

kinematics regularized through an equilibrium-gap elastic
penalization as a regularization allowed for tracking the
time evolution of a loaded cracked sample. In this exper-
imental test case, the number of projections was reduced
from 600 down to 2. The low level of residuals and the very
good agreement with standard DVC constitute a validation
of the proposed principle.
The presented analysis is based on the assumption that

the temporal evolution of the specimen is due to motion and
that this motion can be (at least at small scales) approached
by an elastic problem. Cases where the microstructure
topology changes—as when a new phase appears (e.g.,
void nucleation), when two features merge into one
(coalescence), or when an unexpected crack initiates—fall
out of the scope of the proposed formalism. However,
it is believed that the general philosophy remains valid.
Namely, provided the evolution can be modeled faithfully
with a number parameters that is much smaller than the
voxel number, then matching virtual (computed) projec-
tions with a set of few actual projection allows us to track

FIG. 2. Difference between actual projections of the deformed
state and projections of the corrected reference volume. The left
and right views are the two projections that are used for P-DVC.

FIG. 3. (Left) Advected reference volume using the P-DVC
estimated displacement field. (Right) Reconstructed deformed
volume. (Center) Absolute difference between the two preceding
volumes.
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the time evolution with few radiographs and, hence, at a
high rate. This methodology opens the way to an enhanced
temporal resolution, i.e., 4D tomography, based on a data
processing approach and no change in the required
equipment.
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