
Reconstruction of Bulk Operators within the Entanglement Wedge
in Gauge-Gravity Duality

Xi Dong,1 Daniel Harlow,2 and Aron C. Wall1
1School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

2Center for the Fundamental Laws of Nature, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 4 February 2016; revised manuscript received 4 May 2016; published 8 July 2016)

In this Letter we prove a simple theorem in quantum information theory, which implies that bulk
operators in the anti–de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed
as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an
improvement on existing reconstruction methods, which have at most succeeded in the smaller causal
wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the
quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a
quantum error correcting code.
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Introduction.—The anti–de Sitter/conformal field theory
(AdS/CFT) correspondence tells us that certain large-N
strongly coupled CFTs define theories of quantum gravity
in asymptotically anti–de Sitter (AdS) space [1–6]. For this
definition to be complete, we need to know how to use
CFT language to ask any question of interest in the bulk.
The most basic items in this dictionary are as follows.
(1) Quantum states in the Hilbert space of the CFT

correspond to quantum states in the bulk.
(2) The conformal and global symmetry generators in the

CFT correspond to the analogous asymptotic symmetries in
the bulk. For example, the CFT Hamiltonian maps to the
Arnowitt-Deser-Misner (ADM) Hamiltonian, and a Uð1Þ
charge maps to the electric flux at infinity.
(3) In the large N limit, any single-trace primary operator

OðxÞ in the CFT, with scaling dimension Δ of order N0,
corresponds to a bulk field ϕðx; rÞ. They are related by the
“extrapolate dictionary” [4,7,8]

OðxÞ ¼ lim
r→∞

rΔϕðx; rÞ: ð1Þ

These give an excellent starting point for understanding the
correspondence, but the limiting procedure in the extrapo-
late dictionarymakes it difficult to concretely discusswhat is
going on deep within the bulk. There is a good reason for
this: although the CFT side of the duality is defined exactly,
the bulk side is ultimately some nonperturbative theory of
quantum gravity, which is only approximately given by a
semiclassical path integral over local bulk fields. Thismeans
that any attempt to “back off of the extrapolate dictionary”
and formulate a CFT representation of the bulk operator
ϕðx; rÞ, usually called a reconstruction, must itself be
only an approximate notion. Nonetheless, there is a standard
algorithm for producing such a ϕðx; rÞ perturbatively in
1=N: one constructs it by solving the bulk equations of
motion with boundary conditions (1) [4,9–14]. This

algorithm has the nice feature that it can be done quite
explicitly, but it has the disadvantage that it relies on solving
a rather nonstandard Cauchy problem [11,15]. In this Letter
we will refer to it as the Hamilton-Kabat-Lifschytz-Lowe
(HKLL) procedure, after the authors of Ref. [9], who were
the first to study it in detail.
The HKLL procedure has the interesting property that it

also is sometimes able to reconstruct a bulk operator ϕðx; rÞ
as a CFT operator with nontrivial support only on some
spatial subregion A of a boundary Cauchy slice Σ [9,14].
This is believed to occur whenever the point ðx; rÞ lies in
the causal wedge of A, denoted CA. [This reconstruction
relies on solving a nonstandard Cauchy problem [11,15].
In general it is not known if the solution really exists, but it
can be found explicitly (in a distributional sense [14]) for
the case of spherical boundary regions in the vicinity of the
AdS vacuum; in this case it is called the AdS-Rindler
reconstruction.] CA is defined as the intersection in the bulk
of the bulk causal future and past of the boundary domain
of dependence of A [16].
Causal wedge reconstruction via the HKLL procedure

gives an explicit illustration of “subregion-subregion
duality,” which is the notion that a spatial subregion A
in the boundary theory contains complete information
about some subregion of the bulk [15,17,18]. It has been
proposed however that the subregion dual to A is not just
CA, but rather a larger region: the entanglement wedge EA
[18–20]. To define the entanglement wedge, we must first
define the Hubeny-Rangamani-Takayanagi (HRT) surface
χA [21] (the covariant generalization of the Ryu-Takayanagi
proposal [22]). χA is defined as a codimension-2 bulk surface
of extremal area, which has boundary ∂χA ¼ ∂A and is
homologous toA through the bulk (in the event that multiple
such surfaces exist, it is the one with least area). The HRT
formula tells us that at leading order in 1=N, the area of χA is
proportional to the von Neumann entropy of the region A in
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the CFT [21–23]. The entanglement wedge EA is then
defined as the bulk domain of dependence of any achronal
bulk surface whose boundary is A ∪ χA.
Recently, plausibility arguments for entanglement wedge

reconstruction have been developing along two different
lines. Reference [24] proposed a reinterpretation of causal
wedge reconstruction as quantum error correction, which is
a structure that very naturally allows an extension to
entanglement wedge reconstruction. This was explicitly
realized in toy models [25,26]. At the same time it has
gradually been understood that a proposal [27] for the first
1=N correction to the HRT formula is indicative that
entanglement wedge reconstruction should be possible
[24,28,29]. In particular Jafferis, Lewkowycz, Maldacena,
and Suh (JLMS) have given a remarkable bulk formula for
the modular Hamiltonian associated with any CFT region,
which implies that the relative entropy of two states in a
boundary spatial region A is simply equal to the relative
entropy of the two bulk states in EA [29]. The purpose of this
Letter is to tie all of these ideas together into a proof that
entanglement wedge reconstruction is in fact possible in
AdS=CFT: given a boundary subregionA, all bulk operators
in EA have CFT reconstructions as operators in A.
Entanglement wedge reconstruction as quantum error

correction.—We mentioned above that the holographic
nature of AdS=CFT prevents bulk operator reconstruction
from being a precise notion. This reveals itself not just
in the perturbative nature of the the HKLL algorithm, but
also in its regime of validity. As one acts with more
and more reconstructed operators in a region, the threshold
for black hole formation is eventually crossed. This leads
to a breakdown of the construction. In Ref. [24] this was
formalized into the notion that one should think of
reconstructed bulk operators as only making sense in a
code subspace of the CFT Hilbert space, which we denote
Hcode. The choice of this subspace is not unique, since in
general we can choose to define it based on whatever
observables we are interested in studying, but the simplest
thing to do is choose a state that we know has a geometric
interpretation, and then consider the subspace of all states
where the backreaction of the metric about that geometry is
perturbatively small. [This is an overly conservative def-
inition of the code subspace, since a certain amount of
backreaction (such as that present in the solar system) can
be included by resumming subclasses of diagrams in the
perturbative expansion [11,30]. We adopt it nonetheless to
simplify our arguments below.]
As a concrete example, we can consider the subspace of

states of the CFTon a sphere whose energy is less than that
of a Planck-sized black hole in the center of the bulk,
together with the image of this subspace under the
conformal group. For example in the N ¼ 4 super
Yang-Mills theory with gauge group SUðNÞ, and with
gauge coupling g ∼ 1 to equate the string and Planck scales,
this corresponds to the set of primary operators whose

dimensions are ≲N1=4, together with their conformal
descendants. If the duality is correct, meaning that corre-
lation functions of local boundary operators in these states
can be reproduced by bulk Feynman-Witten diagrams with
some effective action (see Ref. [6] for a discussion of which
CFTs have this property, and also for how to determine the
effective action in terms of CFT data if they do), then the
machinery of Refs. [4,9–14] enables us to explicitly
reconstruct all low-energy bulk operators ϕðx; rÞ in such
a way that their correlation functions in any state in the code
subspace agree with those computed in bulk effective field
theory with that effective action to all orders in 1=N. For
this to work in detail we must choose some sort of covariant
UV cutoff in the bulk, but we will not discuss this explicitly
in what follows.
We can now describe entanglement wedge reconstruction.

Say that we split a Cauchy slice Σ of the boundary CFT into a
region A and its complement Ā. The CFT Hilbert space has a
tensor factorization as

HCFT ¼ HA ⊗ HĀ: ð2Þ

Similarly, we can think of the code subspace as factorizing as

Hcode ¼ Ha ⊗ Hā; ð3Þ

whereHa denotes the Hilbert space of bulk excitations in EA,
and Hā denotes the Hilbert space of bulk excitations in EĀ.
We illustrate this in Fig. 1. Both tensor factorizations are
complicated by the fact that gauge constraints might be
present [31–38], but likely this problem can be absorbed into
the choice of UV cutoff [as shown for Uð1Þ gauge fields by
Ref. [39]]. We could dispense with this issue by formulating
our arguments in terms of subalgebras instead of subfactors,
see Ref. [32] for the relevant definitions, but we have opted
for the latter for familiarity.
Entanglement wedge reconstruction is then the statement

that any bulk operator Oa acting within Ha can always be
represented in the CFTwith an operatorOA that has support
only onHA. In fact, this is the precise definition of the idea
that the operator Oa can be “corrected” for the erasure of
the region Ā [40], and the observation that a given Oa can
be reconstructed on different choices of A reflects the

FIG. 1. Factorizing the bulk and boundary on a time slice. The
entanglement wedge EA is shaded. For simplicity we have shown
a connected boundary region A, although this might not be the
case.
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ability of the code to correct for a variety of erasures [24].
We will establish the existence of OA below, but first we
need to review a recent result that will be essential for
the proof.
Review of the JLMS argument.—In Ref. [29], JLMS

argued for an equivalence of the relative entropy between
the bulk and boundary. In this section we give a more
detailed derivation of this result, which also extends it to
higher orders in the semiclassical expansion given an
assumption we state precisely below. Let us first recall
that the von Neumann entropy of any state is defined as

SðρÞ≡ −Trðρ log ρÞ; ð4Þ
its modular Hamiltonian is defined as

Kρ ≡ − log ρ; ð5Þ
and the relative entropy of a state ρ to a state σ is

SðρjσÞ≡ Trðρ log ρÞ − Trðρ log σÞ ¼ −SðρÞ þ TrðρKσÞ:
ð6Þ

Relative entropy is non-negative, and vanishes if and only if
ρ ¼ σ. Under small perturbations of the state, the entropy
and modular Hamiltonian are related by the “first law of
entanglement”:

Sðρþ δρÞ − SðρÞ ¼ TrðδρKρÞ þOðδρ2Þ: ð7Þ
[This is derived in, e.g., Refs. [41,42] by linearizing the
entropy. To deal with the possible noncommutativity of ρ
and δρ one can use the Baker-Campbell-Hausdorff formula
and recall that TrðA½B;C�Þ ¼ 0 if A and B are simulta-
neously diagonalizable.]
Now consider the setup of the previous section, where in

some holographic CFT we pick a code subspace Hcode ¼
Ha ⊗ Hā in which effective field theory perturbatively
coupled to gravity is valid, and in which all states can be
derived from path integral constructions in this effective
theory. Following JLMS, we recall that Faulkner et al. [27]
showed that such states ρ obey

SðρAÞ ¼ SðρaÞ þ TrðρaAlocÞ: ð8Þ
[The argument of Ref. [27], like the earlier classical
argument [23], assumes that the von Neumann entropy
can be found by an analytic continuation of certain “Renyi
entropies” TrðρnÞ, and that the bulk path integral for
calculating the nth Renyi entropy does not spontaneously
break the associated Zn symmetry. There is also some
subtlety in applying the argument to states that do not
possess a moment of time-reflection symmetry, but this
seems to just be a matter of convenience, and an argument
that dispenses with this criterion will appear elsewhere
soon [43].] Here,Aloc denotes a bulk operator that is a local
integral over the HRT surface χA. At leading order in 1=N,

or equivalently at leading order in the gravitational cou-
pling G, we have

Aloc ¼
AreaðχAÞ

4G
; ð9Þ

as required by the HRT formula, but Aloc receives correc-
tions at higher orders in 1=N [27,44], or in the presence of
more general gravitational interactions [45–55].
In fact Ref. [27] only established Eq. (8) to order N0. In

Ref. [56] it was suggested that Eq. (8) continues to hold to
all orders in 1=N, provided that one always defines χA to be
extremal with respect to the sum on the right-hand side of
Eq. (8) (sometimes called the “generalized entropy”); such
a χA is known as a quantum extremal surface. We will
assume this to be the case throughout the code subspace in
what follows: if it is not then our arguments only establish
entanglement wedge reconstruction to order N0.
To establish the JLMS result, we now observe that on

linearizing Eq. (8) about σ and using the first law (7), we
have

TrðδσAKσAÞ ¼ Tr½δσaðAloc
fσg þ KσaÞ�: ð10Þ

Here, we have taken δσ to be an arbitrary perturbation that
acts within the code subspace Hcode. We have written
Aloc

fσg to emphasize that Aloc is still located at the surface
defined by extremizing SðσaÞ þAloc. Equation (10) is
linear in δσ, so we can integrate it to obtain

TrðρAKσAÞ ¼ Tr½ρfσga ðAloc
fσg þ KσaÞ�; ð11Þ

where now ρ and σ are arbitrary states acting within Hcode.

We have written ρfσga to clarify that we are still factorizing
the bulk Hilbert space at the quantum extremal surface for
σ, even though we are now considering another state ρ as
well. Since Eq. (11) holds for any ρ acting within Hcode, it
implies that

ΠcKσAΠc ¼ Kσa þAloc
fσg; ð12Þ

where Πc is the projection operator onto the code subspace,
and where we have defined the operators on the right-hand
side to annihilate H⊥

code. This is one of the main results
of Ref. [29].
Moreover, combining Eqs. (6), (8), and (11), we find that

SðρAjσAÞ¼Sðρfσga jσaÞþ½Trðρfσga Aloc
fσgÞ−Trðρfρga Aloc

fρgÞ
þSðρfσga Þ−Sðρfρga Þ�: ð13Þ

To order N0 the terms in square brackets cancel due to the

extremality of χfρgA with respect to SðρaÞ þAloc, so we find
the equivalence of the relative entropies, which is the other
main result of Ref. [29]. [This equivalence is complicated
by gravitons, which are metric variations of order

ffiffiffiffi
G

p
and
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thus can produce second-order variations of order N0.
These can be dispensed with by introducing a gauge
(e.g., the one in Ref. [29]) where the quantum extremal
surface χA does not move until order N0.]
More generally, we find that the relative entropies differ

by the difference of generalized entropies of ρ on the two

quantum extremal surfaces χfρgA and χfσgA . In either case,
we observe that if ρa

fσg ¼ σa, then Eq. (13) implies
SðρAjσAÞ ¼ 0, and thus ρA ¼ σA. This is the result that
we will use in the proof below.
By symmetry, the results (13) and (12) apply also for the

complement regions Ā and ā, although for a mixed state
one must use SðρāÞ rather than SðρaÞ when extremizing to
find χĀ. (In this case, we expect that the two entanglement
wedges can never overlap.)
At order N0 it is intuitively clear that Eq. (13) says that

we must be able to reconstruct in the entanglement wedge.
Relative entropy is a measure of the distinguishability of
two quantum states, so we can only have Eq. (13) if ρA, σA
have just as much information about the bulk as ρa, σa. We
now prove a theorem that makes this precise, and extends it
to higher orders in 1=N given the proposal of Ref. [56].
A reconstruction theorem.—
Theorem: Let H be a finite-dimensional Hilbert space,

H ¼ HA ⊗ HĀ be a tensor factorization, and Hcode be a
subspace of H. Let O be an operator that, together with its
Hermitian conjugate, acts within Hcode. If for any two pure
states jϕi; jψi ∈ Hcode, there exists a tensor factorization
Hcode ¼ Ha ⊗ Hā such that O acts only on Ha, and the
reduced density matrices

ρĀ ≡ TrAjϕihϕj; σĀ ≡ TrAjψihψ j;
ρā ≡ Trajϕihϕj; σā ≡ Trajψihψ j ð14Þ

satisfy

ρā ¼ σā ⇒ ρĀ ¼ σĀ; ð15Þ

then both of the following statements are true.
1. For any XĀ acting on HĀ and any state jϕi ∈ Hcode, we
have

hϕj½O;XĀ�jϕi ¼ 0: ð16Þ

2. There exists an operator OA acting just on HA such that
OA and O have the same action on Hcode, i.e.,

OAjϕi ¼ Ojϕi; O†
Ajϕi ¼ O†jϕi; ð17Þ

for any state jϕi ∈ Hcode.
Proof.—First, we note that the two statements are

guaranteed to be equivalent by the theorem proved in
Appendix B of Ref. [24]; for the convenience of the reader
we sketch the logic of that proof in the Appendix.

Therefore, we will only need to prove the first statement.
Furthermore it is sufficient to prove the theorem when O is
a Hermitian operator, which we assume now. [To see this,
we recall that any operator is a (complex) linear combi-
nation of two Hermitian operators.]
Consider any state jϕi ∈ Hcode, and let λ be an arbitrary

real number. For the two states jϕi and

jψi≡ eiλOjϕi; ð18Þ

which are both in Hcode, the assumption of the theorem
guarantees the existence of a tensor factorization Hcode ¼
Ha ⊗ Hā such that O acts only on Ha, which implies

ρā ¼ σā ð19Þ

because the two states only differ by the action of a unitary
operator eiλO on Ha. Using Eq. (15) we find

ρĀ ¼ σĀ ⇒ hψ jXĀjψi ¼ hϕjXĀjϕi: ð20Þ

Using Eq. (18) we may rewrite Eq. (20) as

hϕje−iλOXĀe
iλOjϕi − hϕjXĀjϕi ¼ 0: ð21Þ

Expanding this equation to linear order in λ, we find

hϕj½O;XĀ�jϕi ¼ 0; ð22Þ

which proves Eq. (16), and hence also Eq. (17).
In the above theorem we assumed that H is finite

dimensional to avoid any subtleties with the proof of
Appendix B of Ref. [24]. In AdS=CFT we can accomplish
this by introducing a UV cutoff in the CFT. This only
affects the physics near the asymptotic boundary of anti-
de Sitter space, and therefore is not essential to our
discussion. In bulk language the assumptions for the
theorem follow from picking an O that lies in the entangle-
ment wedge EA for any state in Hcode, with the choice of
factorization coming from the quantum extremal surface for
the state jϕi. This ensures that we can apply Eq. (13) for the
complement region Ā, which then implies Eq. (15).
Discussion.—We view the theorem of the previous

section as establishing the existence of entanglement wedge
reconstruction. Several comments are in order.
Our argument ultimately rests on the validity of the

quantum version (8) of the HRT formula, derived to order
N0 by Ref. [27], and conjecturally extended to higher
orders in 1=N by Ref. [56]. Understanding those results
better is thus clearly of interest for bulk reconstruction.
Any discussion of bulk reconstruction will ultimately
be approximate, so it would be interesting to prove an
approximate version of our theorem and use it to clarify
the stability of our results under small perturbations.
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Note that our proof is constructive. After establishing
that the assumptions of the theorem of Appendix B in
Ref. [24] hold, that theorem provides an explicit formula
for the reconstruction OA. Our construction is thus an
improvement on the HKLL procedure even within the
causal wedge, since the nonstandard Cauchy problem
involved in causal wedge reconstruction has only been
solved in special cases. However, it does not give much
insight into how to think about the reconstruction from a
bulk point of view. This is to be contrasted with the HKLL
algorithm, which (at least when it works) proceeds by
solving bulk equations of motion. We believe that a bulk
interpretation should exist, and finding it could be quite
illuminating.
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APPENDIX: THEOREM OF OPERATOR
ALGEBRA QUANTUM ERROR CORRECTION

In this appendix, we give an intuitive summary of the
derivation of the theorem establishing the equivalence
between Eqs. (16) and (17). More details can be found
in the full proof provided in Appendix B of Ref. [24].
Suppose that Hcode is spanned by an orthonormal basis

jiiAĀ. Consider the state

jΦi ¼
X

i

jiiR ⊗ jiiAĀ; ðA1Þ

where R is a reference system whose Hilbert space is
spanned by an orthonormal basis jiiR. Using Eq. (A1)
we may mirror any operator O acting within Hcode
to an operator OR on R such that OjΦi ¼ ORjΦi,
O†jΦi ¼ O†

RjΦi.
The task is then to instead view OR as OR ⊗ IĀ and

mirror it back to an operator OA on A. To do this we need
the Schmidt decomposition

jΦi ¼
X

α

cαjαiA ⊗ jαiRĀ; ðA2Þ

where the states jαiRĀ with cα ≠ 0 generally span a
subspace of HR ⊗ HĀ. We can mirror OR ⊗ IĀ onto A
if it acts within this subspace, which is guaranteed by

½OR ⊗ IĀ; ρRĀðΦÞ� ¼ 0: ðA3Þ

This statement is implied by Eq. (16). Therefore, we
obtain Eq. (17).
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