
Piezoelectric Electromechanical Coupling in Nanomechanical Resonators
with a Two-Dimensional Electron Gas

A. A. Shevyrin,* A. G. Pogosov, A. K. Bakarov, and A. A. Shklyaev
Rzhanov Institute of Semiconductor Physics 13, Lavrentyev Avenue, Novosibirsk 630090, Russia,

and Novosibirsk State University 2, Pirogov Street, Novosibirsk 630090, Russia
(Received 15 March 2016; published 30 June 2016)

The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever
containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to
oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electro-
mechanical coupling. A physical model is developed, which quantitatively explains the experiment. It
shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the
boundary between suspended and nonsuspended areas, rather than the stress itself.
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Most of the currently studied low-dimensional electron
systems are fabricated from a two-dimensional electron gas
(2DEG) embedded in a semiconductor bulk. A classical
example of such a system is a 2DEG in GaAs=AlGaAs
heterostructures. However, selective etching of a sacrificial
layer (often called surface nanomachining) also gives
us an opportunity to create a 2DEG embedded in a
thin membrane freely suspended over a substrate [1]. The
nanostructures fabricated from such membranes are
mechanically moveable with their movement affecting
electron transport and conductivity [2]. Such electro-
mechanical coupling gives us an opportunity to probe
mechanical motion at the nanoscale and it could be used to
study interesting mechanical phenomena, such as “phonon
lasing” [3] and the quantum-limited motion of an artifi-
cially made object [4]. Moreover, it opens up new prospects
for studying nontrivial transport phenomena in a 2DEG
under unusual conditions, namely, in the presence of
additional mechanical degrees of freedom, and for creating
nanoelectromechanical systems (NEMS). For example,
Refs. [5,6] show that the electron transport through a
quantum point contact placed on a micromechanical
resonator is sensitive to mechanical vibrations.
References [2,7,8] demonstrate that diffusive conductive
channels in a 2DEG can also be used as nanoelectrome-
chanical transducers.
The two fundamental key points arising in the context of

NEMS are the physical mechanisms underlying actuation
and transduction of the nanomechanical motion. The
actuation in NEMS with a 2DEG is addressed elsewhere
[7], while the present Letter is focused on the transduction
mechanism. Most papers considering GaAs=AlGaAs-
based suspended systems contain a proposal that a
2DEG embedded in a resonator is sensitive to its vibrations
due to the change in the density of a 2DEG that screens the
piezoelectrically induced bound charge [2,5,6,9]. However,
there is a lack of experimental evidence for this hypothesis

and there is seemingly no common physical model describ-
ing this electromechanical coupling.
In the present Letter, we experimentally demonstrate

that the dominant physical mechanism making a 2DEG
sensitive to NEMSmechanical vibrations is associated with
the piezoelectric effect and show the sensitivity magnitude.
We also propose a physical model giving an independent
estimate for the sensitivity magnitude consistent with the
experiment. According to the model, the local change in
the 2DEG conductivity is determined mainly by spatial
deviations of the mechanical stress tensor, rather than by
the stress itself, as could be intuitively expected.
The piezoelectric effect is essentially anisotropic

[10,11] and, in a GaAs crystal, identical mechanical
stresses in the perpendicular directions [110] and ½1̄10�
induce opposite electrical polarizations. The central idea
of the experiment is to check whether the change in the
conductivity of a 2DEG, contained in two identically
vibrating cantilevers oriented in the considered directions,
reflects such anisotropy and, thus, to test the hypothesis
about the piezoelectric nature of electromechanical
coupling.
The experimental samples are fabricated from the

GaAs=AlGaAs heterostructure described in detail in
Ref. [7]. The heterostructure contains a 166 nm-thick stack
of layers grown by means of molecular-beam epitaxy above
a 400 nm-thick Al0.8Ga0.2As sacrificial layer, which, in
turn, resides on the [001]-oriented GaAs substrate. The
stack contains two Al0.33Ga0.67As layers surrounding the
13 nm-thick GaAs layer with a 2DEG. Also, the stack
contains a 10 nm-thick GaAs top cap layer. The 2DEG
has an electron density of n ¼ 6.7 × 1011 cm−2 and the
mobility of μ¼ 1.2×106 cm2V−1 s−1. The samples’ lateral
geometry is defined using electron-beam lithography
followed by anisotropic plasmachemical etching in BCl3.
The samples are suspended using selective wet etching
in a 1:100 hydrofluoric acid water solution. The electron

PRL 117, 017702 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 JULY 2016

0031-9007=16=117(1)=017702(5) 017702-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.017702
http://dx.doi.org/10.1103/PhysRevLett.117.017702
http://dx.doi.org/10.1103/PhysRevLett.117.017702
http://dx.doi.org/10.1103/PhysRevLett.117.017702


density was shown [12] earlier to remain almost unchanged
after the suspension of a similar heterostructure.
Each experimental chip contains two identical canti-

levers oriented in perpendicular directions ([110] and
½1̄10�). Hereinafter, we will refer to them as Cantilever-I
and Cantilever-II, respectively. The cantilevers are L ¼
3 μm long, W ¼ 2 μm wide, and t ¼ 166 nm thick [see
Fig. 1(a)]. There is a series of holes placed on a longitudinal
line on each of the cantilevers. The distance between
the holes is small enough for the regions between them
be nonconductive due to edge depletion, except for one
spacing near the cantilever base, where the distance is
enlarged up to 600 nm. Thus, the line of holes electrically
separates the 2DEG into two areas—the source and the
drain (individual for each cantilever)—connected via a
single constriction. Each cantilever is equipped with three
side gates with one of them (Gate-1) surrounding the free
end [see Fig. 1(a)].
The conductanceG response to the cantilevers’ vibrations

is measured using the heterodyne downmixing technique
[13] applied in the following way. Consider a cantilever
performing small flexural vibrations at the fundamental

mode as a driven linear oscillator, the motion of which is
described by the following equation:

̈ξþ Ω0

Q
_ξþΩ2

0ξ ¼
F0 cosΩt

m
; ð1Þ

where ξ is displacement of the cantilever free end, Ω0 is
resonant frequency,Q is the quality factor, F0 andΩ are the
amplitude and the frequency of the effective driving force,
and m is the cantilever effective mass. Write the solution of
Eq. (1) as

ξ ¼ ξ0ðΩÞ cos ½Ωtþ φðΩÞ�: ð2Þ

Since the vibrations are small, consider only the linear
conductance response to the vibrations:

G ¼ G0 þ
dG
dξ

ξ ¼ G0 þ δG0 cos ½Ωtþ φðΩÞ�: ð3Þ

To transform this high-frequency response into a low-
frequency electrical signal, we apply a voltage

VSD ¼ V0 cos ½ðΩ − ωÞt� ð4Þ

between the source and the drain. Here ω ¼ 2π ×
25 kHz ≪ Ω, Ω0. Source-drain current I ¼ GVSD has
two components at the high 2Ω − ω and the low ω
heterodyne frequencies. The low-frequency component
which we measure in the experiment is

Iω ¼ I0ðΩÞ cos ½ωtþ φðΩÞ�; ð5Þ

where I0ðΩÞ ¼ V0δG0ðΩÞ=2. Thus, measuring amplitude
I0ðΩÞ and the phase of this low-frequency current, we
obtain the amplitude δG0ðΩÞ ¼ 2I0ðΩÞ=V0 and the phase
φðΩÞ of the high-frequency conductance response to
vibrations. At the same time, the heterodyne downmixing
eliminates the known difficulties inherent to the measure-
ments at the high driving frequency [13].
The cantilevers’ vibrations are driven at the fundamental

flexural mode perpendicularly to the surface using
the electrostatic (capacitive) actuation scheme. For this
purpose, we apply a voltage VG to Gate-1 [see Fig. 1(a)],
satisfying condition jVGj ≫ jVSDj. Then the effective
driving force is

F ¼ C0V2
G=2; ð6Þ

where factor C0 is proportional to the derivative of the gate-
cantilever capacitance on the free end displacement ξ (we
assume ξ > 0 if the cantilever is bent up in the direction
from the substrate). As shown in Ref. [7], C0 can be
estimated as

C0 ≈ −0.39ε0WL=d20; ð7Þ

FIG. 1. (a) False-color scanning-electron-microscope image of
a cantilever containing a two-dimensional electron gas. The areas
between the holes in the cantilever are nonconductive due to edge
depletion, except for the one constriction where the interhole
distance is enlarged. (b)–(e) Signed amplitudes (b),(c) and phases
(d),(e) of the change in the conductance of the cantilevers
oriented along [110] (b),(d) and ½1̄10� (c),(e) crystallographic
directions measured at the temperature of 4.2 K.
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where ε0 is the vacuum dielectric constant and d0 ¼
400 nm is the distance between the cantilever and the
underlying substrate.
The applied voltageVG is a sumof dc and ac components:

VG ¼ Vdc þ Vac cos ½ðΩ − ωÞt� × ½1þ cosωt�: ð8Þ

The ac component is a high-frequency signal (propor-
tional to VSD) amplitude-modulated by low frequency ω.
The modulated signal has three components: one at carrier
frequencyΩ − ω and two at sidebandsΩ − 2ω andΩ ≈Ω0.
The effective force acting at the frequency Ω obtained from
Eqs. (6) and (8) has the amplitude

F0 ¼ C0VdcVac=2: ð9Þ

Since, as we show later, ω ≫ Ω0=Q, the other frequency
components of the effective force are far from the reso-
nance and can be neglected.
We use a Tektronix AFG3252C two-channel generator

and appropriate attenuators to apply the gate and source-
drain voltages. The modulating signal is applied to the
generator input from an SR5210 lock-in amplifier. The
lock-in amplifier is also used to measure the amplitude
I0ðΩÞ and the phase φðΩÞ of the current Iω. The phase is
measured with respect to the modulating signal. During the
experiment, the samples are placed in a vacuum tube and
cooled down to liquid helium temperature 4.2 K.
Figures 1(b) and 1(c) show the signed amplitude δG0ðΩÞ

of the conductance response measured as a function of
driving frequencyΩ=2π for the Cantilever-I and Cantilever-
II, respectively. Phase φðΩÞ is shown in Figs. 1(d) and 1(e).
The curves are obtained at Vdc ¼ 2 V, Vac ¼ 50 mV
and V0 ¼ 6.25 mV.
The main difference between the data obtained for the

perpendicularly oriented cantilevers is the sign of their
electrical response to vibrations. This difference could
equivalently be shown by a 180° phase shift, but we use
the signed amplitude for clarity. The amplitude-frequency
dependence has a Lorentzian form and agrees with Eqs. (1)
and (3), as well as the measured phase-frequency depend-
ence. The solid red lines in Figs. 1(b)–(e) show the
corresponding fits to the experimental data. The resonant
frequencies Ω0=2π extracted from the fits are 11.455 MHz
and 10.889 MHz for the Cantilever-I and Cantilever-II,
respectively. Quality factors Q are 18 000 and 23 400. The
measured resonant frequencies agree with the rough esti-
mate [14] Ω0=2π ¼ 0.16t

ffiffiffiffiffiffiffiffi
E=ρ

p
=L2 ≈ 14.8 MHz, which

can be obtained for the first flexural mode of thin cantilever
vibrations. Here E ¼ 121 GPa is the [110] Young modulus
of Al0.33Ga0.67As [15] and ρ ¼ 4800 kg=m3 is the mass
density. Some discrepancy can be explained by the fact
that the cantilevers’ width is not small in comparison with
their length, as well as by their nonuniformity and by the
etching undercut.

Consider the factors influencing the sign of δG0ðΩ0Þ.
This resonant amplitude of the conductance change is
proportional to the vibrations amplitude which, in turn, can
be expressed from Eqs. (1) and (9) as

ξ0ðΩ0Þ ¼
F0Q
mΩ2

0

¼ C0VdcVacQ
2mΩ2

0

: ð10Þ

Thus, δG0ðΩ0Þ should be proportional to Vdc and should
change the sign with its negation, if the vibrations are
electrostatically driven. Figure 2(a) shows the experimen-
tally measured δG0ðΩ0Þ dependence on Vdc. The shown
data confirm the predicted behavior, with δG0ðΩ0Þ having
opposite signs for the two cantilevers in all the range of Vdc.
Since the sign of ξ0ðΩ0Þ does not depend on crystallo-
graphic orientation, the observed negation of δG0ðΩ0Þ,
according to Eq. (3), shows that dG=dξ has the opposite
signs for the cantilevers oriented in [110] and ½1̄10�
directions. This anisotropy can be considered as indicative
of the piezoelectric nature of the mechanical vibrations’
influence on the conductance. To obtain an additional
quantitative confirmation of this hypothesis and to reveal
the details of piezoelectric response, we have compared
independent experimental and numerical estimates of the
relative sensitivity to the vibrations ð1=G0ÞðdG=dξÞ. This
value is the proportionality factor between the relative
conductance change and the vibrations’ amplitude:

δG0ðΩ0Þ
G0

¼ 1

G0

dG
dξ

ξ0ðΩ0Þ: ð11Þ

The δG0ðΩ0Þ=G0 dependence on ξ0ðΩ0Þ estimated using
Eq. (10) is shown in Fig. 2(b). The cantilevers’ resistance
1=G0 calculated as a difference between measured two-
terminal resistance and estimated lead resistance (300 Ω)
equals 1 kΩ. A cantilever effective mass appearing in
Eq. (10) is estimated asm ¼ 0.24ρtWL [7]. The data shown
in Fig. 2(b) give the desired values of ð1=G0ÞðdG=dξÞ
equal to 5.6 × 10−4 μm−1 and −8.6 × 10−4 μm−1 for the
Cantilever-I and the Cantilever-II, respectively. The
observed behavior is reproduced on another sample giving

FIG. 2. (a) The signed amplitudes of the conductance change
induced by vibrations have the opposite signs for the Cantilever-I
and the Cantilever-II in all of the gate voltage range. (b) Relative
amplitude of the conductance change as a function of the
estimated vibrations’ amplitude.
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the sensitivity values7 × 10−4 μm−1 and−11 × 10−4 μm−1.
The rest of theLetter is devoted to a physicalmodel giving an
independent estimate for this value.
To roughly estimate the mechanical stress, we use the

Euler-Bernoulli beam theory and neglect the fact that the
cantilevers’ width W ¼ 2 μm is not much less than their
lengthL ¼ 3 μm.Theshapeofthefirst flexuralmodeis[7,14]

U ¼ ξ × ½Aðcos kl − cosh klÞ þ Bðsin kl − sinh klÞ� ð12Þ
where l is the distance from a cantilever base, k ≈ 1.875=L,
A ≈ −0.5 and B ≈ 0.367. We introduce x, y, and z axes
coinciding with [110], ½1̄10�, and [001] crystallographic
directions, respectively [see Fig. 3(a)]. Then the six-
dimensional vectors [16] describing the mechanical stress
(in Voigt notation) are

σIi ¼ ð σ 0 0 0 0 0 ÞT;
σIIi ¼ ð 0 σ 0 0 0 0 ÞT ð13Þ

for the Cantilever-I and the Cantilever-II. Here

σ ¼ −Ezd2U=dl2; ð14Þ
where z ¼ 0 corresponds to the cantilever neutral plane.
The piezoelectric effect leads to electrical polarization
Pi ¼ dijσj, where dij is the piezoelectric matrix [16]:

dij ¼ d14

0
B@

0 0 0 0 1 0

0 0 0 −1 0 0

1 −1 0 0 0 0

1
CA: ð15Þ

Here d14 ¼ −3.04 pm=V for Al0.33Ga0.67As [15]. This non-
uniform polarization induces the volume bound charge with
the density

ρb ¼ −divP ¼ ∓d14
dσ
dz

¼ ∓d14E
d2U
dl2

; ð16Þ

where signs “−” and “þ” correspond to the Cantilever-I and
the Cantilever-II, respectively [see Fig. 3(a)]. The volume
charge is compensated by the bound charge

σb ¼ −ρbt=2 ð17Þ

on the upper and lower surfaces of the cantilever.
Let the electrical potential created by the bound charge

be δϕext. The 2DEG responds to this external influence with
a change in electron density δn, which, in turn, leads to the
change in chemical potential δnπℏ2=m� and to the change
in electrical potential δϕresp, such that the electrochemical
potential remains zero:

−eðδϕext þ δϕrespÞ þ δn
πℏ2

m� ¼ 0: ð18Þ

Here e and m� are negated electron charge and effective
mass in GaAs. To estimate δn, we neglect the last term in
Eq. (18), assume pure electrostatic screening [17] and
the 2DEG having constant electrical potential δϕext þ
δϕresp ¼ 0. This assumption is reasonable if

jδnπℏ2=m�j ≪ jeδϕextj: ð19Þ

To understand this, consider the influence of a point chargeq
at thedistance r from the2DEG.The inducedδn is of order of
q=ðer2Þ, and δϕext ≈ q=ð4πεε0rÞ. The substitution of these
expressions into Eq. (19) shows its equivalence to condition
r ≫ aB, where aB ≈ 13 nm is the effective Bohr radius in
GaAs, much less than membrane thickness t ¼ 166 nm.
Thus, we believe that the model of pure electrostatic screen-
ing allows us to estimate the influence of most of the bound
charge induced by a cantilever bending.
For simplicity, we consider the system as an infinite

nonbent equipotential plane (2DEG) sandwiched between
two t=2-thick layers of a material with dielectric constant
ε ≈ 13 equal to that of Al0.33Ga0.67As. We neglect the small
bending in electrostatic calculations, but save the bound
charge determined by Eqs. (16) and (17) at 0 ≤ l ≤ L.
Using these simplifications, we estimate the screening
charge density using the method of images:

δn ¼ −
1

2πe

Z
L

0

ρB

�
fsurf

�
l − l0

t

�
þ fvol

�
l − l0

t

��
dl0;

ð20Þ

where

fsurfðrÞ ¼
2ε

εþ 1

X∞
n¼0

�
−
ε − 1

εþ 1

�
n nþ 1=2
r2 þ ðnþ 1=2Þ2 ; ð21Þ

(a)

(b)

FIG. 3. (a) Simplified picture showing the origin of the piezo-
electric response anisotropy. (b) Spatial dependence of the
estimated change in electron density δn per unit displacement
ξ of the cantilever free end. The shown dependence corresponds
to the [110]-oriented cantilever and should be negated for the
½1̄10�-oriented cantilever.
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fvolðrÞ ¼ − ln

�
1þ 1

4r2

�
−
X∞
n¼1

�
−
ε − 1

εþ 1

�
n
ln
½r2 þ ðnþ 1=2Þ2�½r2 þ ðn − 1=2Þ2�

½r2 þ n2�2 ð22Þ

The calculated δn per unit displacement of the cantilever
free end ξ is shown in Fig. 3(b) as a function of distance l
from the cantilever base. The obtained dependence shows
that the considered effect is expected to be most prominent at
distances jlj of the order of the cantilever thickness t from its
base, with δn changing the sign when l is negated. Almost
the same dependence can be obtained for the mechanical
stress in the form of σðl ¼ 0ÞΘðlÞ, where σ is determined
by Eq. (14) and ΘðlÞ is the Heaviside step function. This
shows that, the change in electron density δnðlÞ is primarily
an edge effect arising near the point l ¼ 0, where the
stress suffers a jump. This point corresponds to the lateral
boundary between suspended and nonsuspended areas.
Actually σðlÞ decreases rapidly in the nonsuspended bulk
at the characteristic distance of order t from the boundary.
Thus, the stepwise jump of the mechanical stress implied by
our model can be used as a reasonable simplification.
The cantilever is thin enough (166 nm) for the consid-

ered boundary to be clearly seen with a scanning electron
microscope. The measured distance between the boundary
and the constriction center equals l ¼ 1.3 μm. The electron
density change corresponding to this distance can be
obtained from Eq. (20) and equals dðδnÞ=dξ ¼ 7.4×
108 cm−2 μm−1. We neglect the periodic influence of the
vibration-induced stress on the electron mobility [18],
because the 2DEG placed closely to the cantilever neutral
plane is almost not subject to the stress. Moreover, the
characteristic time of impurity recharging far exceeds the
vibration period. Then the expected relative conductance
sensitivity to the vibrations is equal to the expected
relative change in the electron density: ð1=G0ÞðdG=dξÞ ¼
ð1=nÞ(dðδnÞ=dξ) ≈ 1.1 × 10−3 μm−1. This value agrees
with the values 0.56×10−3 μm−1 and −0.86×10−3 μm−1
experimentally obtained above for the Cantilever-I and
Cantilever-II. Thus, the proposed model agrees with the
experiment and describes it adequately, though a detailed
experimental study of the spatial change in the electron
density near the boundary between suspended and non-
suspended areas is desirable.
To conclude, it is experimentally shown that the con-

ductance change resulting from mechanical vibrations of
NEMS with a 2DEG demonstrates the anisotropy inherent
to a piezoelectric effect. A model describing this change
and predicting its value is proposed. The model implies that
the mechanical stress induces the bound charge which is
screened by the change in the 2DEG density. According to
the model, the change in 2DEG conductivity is related
primarily to the rapid change in the mechanical stress near
the boundary between suspended and nonsuspended areas,
rather than to the stress itself.
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