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We demonstrate the possibility to drive an antiferromagnetic domain wall at high velocities by fieldlike
Néel spin-orbit torques. Such torques arise from current-induced local fields that alternate their orientation
on each sublattice of the antiferromagnet and whose orientation depends primarily on the current direction,
giving them their fieldlike character. The domain wall velocities that can be achieved by this mechanism are
2 orders of magnitude greater than the ones in ferromagnets. This arises from the efficiency of the staggered
spin-orbit fields to couple to the order parameter and from the exchange-enhanced phenomena in
antiferromagnetic texture dynamics, which leads to a low domain wall effective mass and the absence of a
Walker breakdown limit. In addition, because of its nature, the staggered spin-orbit field can lift the
degeneracy between two 180° rotated states in a collinear antiferromagnet, and it provides a force that can
move such walls and control the switching of the states.
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Antiferromagnets (AFs) are promising materials for
spintronics because they show fast magnetic dynamics
and low susceptibility to magnetic fields, and they produce
no stray fields. These advantages stem from the antiferro-
magnetic ordering which consists of alternating magnetic
moments on individual atomic sites with zero net mag-
netization, and whose orientation is described by the Néel
vector. This also means that an AF cannot be efficiently
manipulated by external magnetic fields, a fact that has
relegated AFs as primarily passive elements in today’s
technology. The emerging field of antiferromagnetic spin-
tronics focuses on reversing this trend, making AFs active
elements in spintronic devices [1–4].
A new way to manipulate the Néel order parameter is the

recently proposed relativistic Néel spin-orbit torque
(NSOT) [5]. The NSOT is the antiferromagnetic version
of the inverse spin-galvanic (Edelstein) mechanism [6–9],
which generates current-induced spin-orbit torques in
ferromagnets (FMs) [10,11]. It locally produces a non-
equilibrium spin polarization in particular crystal structures
that is proportional to the applied uniform current and
alternates in sign between the different magnetic sublatti-
ces. The local nonequilibrium spin polarization results in a
staggered spin-orbit field that couples effectively to the
Néel order parameter, as shown in Fig. 1(a) [3,5,12].
The NSOT arises in crystals whose magnetic atoms have

a local environment with broken inversion symmetry and
where the two magnetic sublattices form inversion partners,
such as in Mn2Au and CuMnAs. Its first observation has
recently been reported in CuMnAs [3], with the measure-
ments indicating that the NSOT switching involved a
reconfiguration of a multiple-domain state of the AF.
This motivates a study of current-induced AF dynamics

beyond the coherent single-domain regime, in particular, a
study of the antiferromagnetic domain wall (AFDW)
motion driven by the fieldlike NSOT. Both 90° and 180°
AFDWs are experimentally relevant since, in thicker
CuMnAs films, an in-plane biaxial anisotropy dominates
[3], while thinner films (below ∼10 nm) are uniaxial [13].
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FIG. 1. (a) Crystal structure of AF CuMnAs. The two spin
sublattices of the Mn atoms are M1=2 (red and purple). The
current-induced staggered NSOT field (BN1=N2—green and blue)
has an opposite sign at each Mn sublattice. The nonmagnetic As
atoms (light grey) provide the locally broken inversion symmetry
at the Mn inversion partner sites. Jc represents the current.
(b) AFDW between 180° rotated AF domains in the presence of
the staggered NSOT field. The energy density has opposite sign
in the left and right domains, producing a ponderomotive force.
(c,d) AFDW between 90° rotated AF domains in (c) the staggered
NSOT field and (d) the uniform Zeeman (BZ) field.
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In these crystals the staggered spin-orbit field is generated
by an electrical current applied in the (001) plane. The NSOT
field is oriented in the plane in the direction perpendicular to
the current, and its amplitude from ab initio calculations is in
the range of ∼1–10 mT per 107 A=cm2.
In this Letter we present a theoretical study demonstrating

that AFDWs can be controlled electrically by the fieldlike
NSOTs with high efficiency. Moreover, the staggered NSOT
field opens an unprecedented possibility to set into motion a
180° AFDW in a collinear AF. In addition, whereas the
velocity of a ferromagnetic domain wall (FMDW) is limited
by the Walker breakdown, in an AF only the much higher
magnon velocity sets the upper limit [14–16]. In a FM the
Walker breakdown arises when the FMDW begins to
oscillate between a Bloch and Néel type driven by the
competition of the external field torque and the internal
anisotropy torque, which can be of similar order, as shown in
Figs. 2(a) and 2(c). In an AF, on the other hand, the internal
torque due to exchange is several orders of magnitude larger
than any driving torque, which leads to a stiff AFDW, a very
low effective mass of the AFDW, and no Walker-breakdown
point, as shown in Figs. 2(a) and 2(b). At fields below the
Walker breakdown, both the FM and AF have a similar
dependence on the driving field. In our calculations (assum-
ing no extrinsic pinning) we show that the velocities are
proportional to the Néel field, and we estimate that they can
reach values of ∼10–100 km=s, orders of magnitude higher
than in FMs. Also, by comparing the steady motion of a 90°
AFDW in the presence of a uniform Zeeman field and the
staggered spin-orbit field, we show that the velocities
induced by the latter are much greater.
Experimentally, the AFDW can be dragged by a STM tip

that generates a spin-polarized current, with the velocity of
the AFDWequal to the velocity of the tip [17]. The AFDW
can also be pushed by circularly polarized magnons [16]. In
systems formed by antiferromagnetically coupled thin-film
FMs (synthetic AFs), where the antiferromagnetic coupling
is not as strong as in our case of bulk AF, an antiferro-
magnetic texture can be moved by the electric current due
to dissipative (antidamping-like) spin torques [18–20].
Another proposed method to manipulate an AFDW is with
the gradient of an external magnetic field [21]. None of
these proposed methods for AFDW can reach the high
velocities and efficiencies afforded by the fieldlike NSOT.
We consider a compensated collinear AF described by

the sublattice magnetization vectors M1 and M2

(jM1j ¼ jM2j ¼ Ms=2), in which the electrical current
generates the nonequilibrium staggered spin-orbit field
described by vectors BN1 and BN2 acting on M1 and
M2, respectively, as shown in Fig. 1(a). For convenience,
we measure BN1=N2 in units of the magnetic field. (The
conversion to current density can be calculated by micro-
scopic techniques [5]).
Due to the direct coupling between the atomic spins and

the local fields, the current-induced contribution to the

magnetic energy density of an AF takes the form
w ¼ −M1 ·BN1 −M2 · BN2 ¼ −L ·BNeel, where L≡
M1 −M2 is the Néel order parameter vector, and
BNeel ≡ ðBN1 − BN2Þ=2. The sign and orientation of
BNeel are determined by the sign and orientation of
the electrical current. In the presence of an external
uniform magnetic field or in a general case when
ðBN1 þ BN2Þ=2 ≠ 0, there is an additional uniform
Zeeman field contribution, BZee, which in the magnetic
energy density expression couples to the uncompensated
magnetization of the AF, MAF ¼ M1 þM2. Zeeman and
Néel fields act on an AF in different ways. The Néel field
can change only the equilibrium orientation of the AF
vector L. On the other hand, the Zeeman field produces a
small magnetization MAF ¼ L ×BZee ×L=ðMsHexÞ,
where Hex stands for the exchange field that keeps
magnetic sublattices antiparallel.
The final expression for the magnetic energy density can

then be written as
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FIG. 2. (a) Schematic of Bloch domain wall velocity vs field for
an AF (magenta line) and a FM (blue line). At low fields both FM
and AF have the same velocity vs field, but beyond the Walker
breakdown, the FM slows down as the domain wall character
oscillates between Bloch and Néel. (b,c) Illustration of torques
exerted on the AFDW and FMDW center. (b) The Néel field
generates a torque (Γ1N=2N) that cants M1=2 forward, and the
much larger internal torque from the exchange interaction (Γex)
rotates the sublattice magnetizations towards their respective easy
axis directions, which causes the AFDW motion. Γex=Γ1N=2N ≫
1 leads to a small deformation of the DW from its equilibrium
(Bloch) configuration, i.e., to a very small AFDW mass. (c) In a
FM the external driving field torque can reach a similar
magnitude as the internal anisotropy torque (Γan), leading to
larger deformation of the FMDW, i.e., to a much larger FMDW
mass.
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w ¼ −
1

2MsHex
ðL ×BZeeÞ2 −L ·BNeel: ð1Þ

Equation (1) shows that the effect produced in AFs by the
Zeeman field is (i) quadratic in BZee and (ii) weakened due
to the strong exchange interaction. In contrast, the effect of
the Néel field is linear in BNeel and not diminished by the
strong exchange interaction. Hence, its effect is much
stronger. We also emphasize that the Néel field can remove
the degeneracy of states with opposite direction ofL, while
other physical fields can distinguish only between states
with different orientations of L. This directly implies that
the Néel field can produce an effective force per area
2L ·BNeel that will set into motion the AFDW between
180° rotated domains, independent of the microscopic
structure of the AFDW. The sign of BNeel (of the applied
electrical current) determines the direction of the AFDW
motion.
To study this problem in more detail, we consider a

one-dimensional texture in a uniaxial AF in the presence of
a Néel field parallel to the AF easy axis [see Fig. 1(b)].
Such an AF has two states that are magnetically equivalent
at zero field with L1 ¼ −L2 parallel to the easy axis.
Both states have the same Zeeman energy, since
ðL1 ×BZeeÞ2 ¼ ðL2 ×BZeeÞ2, and therefore the Zeeman
field can be neglected. The dynamics of an AF texture is
described by phenomenological equations for the AF
vector (see, e.g., Refs. [22–24]). In our case these equations
are reduced to the following equation for the angle θðx; tÞ
between L and the easy axis:

c2
∂2θ

∂x2 − θ̈ − γ2HexHan sin θ cos θ

¼ αGγHex
_θ þ γ2HexBNeel sin θ; ð2Þ

where γ is the gyromagnetic ratio, Han is the magnetic
anisotropy field, c is the magnon velocity, and αG is the
Gilbert damping parameter.
Equation (2) has a solution which describes a moving

AFDW separating domains with θ1 ¼ 0 and θ2 ¼ π.
The velocity of steady motion,

vAFsteady ¼
2BNeelcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2GHanHex þ 4B2
Neel

q ; ð3Þ

is obtained from the balance between the force produced by
the Néel field and the internal (Gilbert) damping. In
contrast to the FM case, the velocity is only limited by
the magnon velocity c ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AHex=Ms

p
, where A is the

exchange stiffness [14–16].
We compare this result with the steady motion of the

FMDW, separating 180° rotated domains in a uniaxial FM,
induced by a Zeeman magnetic field or, equivalently, by the
fieldlike component of a current-induced spin torque [25].
Such a FMDW cannot move while keeping its form since a

parallel shift is connected with a variation of the total
magnetization [15]. In contrast, the magnetization of an AF
in the presence of the Néel field has a pure dynamic origin.
Hence, the parallel shift of an AFDW does not affect the
magnetization of the texture.
Steady motion of the FMDW in a uniaxial FM is

often combined with the rotation of the magnetization
around the easy axis with a constant angular velocity
ω ¼ γBZee=ð1þ α2GÞ. In this case the velocity of the steady
motion is proportional to the damping coefficient:
v ¼ γαGxDWBZee=ð1þ α2GÞ, where xDW ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=HanMs

p
is

the wall width. In the more realistic case considered by
Walker [26], the magnetic anisotropy function includes
demagnetization energy. In this case magnetization in the
moving FMDW makes a constant angle sin 2φ0 ¼
HZee=Hc with the FMDW plane, where the critical field
Hc ≈ αGHdip−an sets the Walker limit for the FMDW
velocity (we assume that the dipolar anisotropy field
Hdip−an is comparable to Han):

vFMsteady ¼
γBZeexDW

αG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Hdip−an
Han

− ðHdip−an
Han

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

Zee
H2

c

qr : ð4Þ

The mobilities of AFDWs and of FMDWs below the
Walker limit could be of the same order for systems with
similar values of the wall width and Gilbert damping. This
can be seen by comparing Eqs. (3) and (4):

μFM ≡ dvFMsteady
dBZee

¼ γxDW
αG

; ð5Þ

μAF ≡ dvAFsteady
dBNeel

¼ c
αG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HanHex

p ≈
γxDW
αG

: ð6Þ

However, the limiting velocity of the AFDW coincides with
the magnon velocity, vAFlim ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HexA=Ms

p
, which due to

strong exchange enhancement, is much larger than the
typical magnon velocity in a FM. On the other hand, in a
FM the limiting (Walker) velocity vFMlim ≈ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hdip−anA=Ms

p
,

where we have assumed Hdip−an is of the order of Han.
Hence, vFMlim is much smaller than vAFlim. For example, typical
values of vAFlim ¼ c vary from 36 km=s in dielectric NiO [27],
40–50 km=s in metallic γ −Mn1−xCux alloys [28–30], and
up to 90 km=s for an AF KFeS2 with extremely large
magnon frequency (10 THz) [31]. For comparison, the
highest FMDW velocities range from 100 m=s [32] to
400 m=s [33], and a velocity up to 750 m=s was recently
achieved in a synthetic AF [20].
In order to illustrate the efficiency of the NSOT, we next

compare the effects of the Néel and Zeeman fields on
AFDWs. To do so, we reduce the complexity of Eq. (2),
which fully describes the dynamics of the AF texture in all
space, to one where the AFDW can be treated as a point
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particle with an effective mass. This will be the case if, e.g.,
the AFDW thickness is much smaller than the sample
dimensions. In such cases the motion can be described with
a reduced number of dynamical variables. The most natural
way to introduce these variables is through the integral of
motion for the moving AFDW in the absence of external
forces. The integral of motion related to translation invari-
ance is the momentum of the AFDW [see Eq. (6) in
Ref. [34]]. Variation of momentum is due to the presence of
external forces that break translational invariance of space
(ponderomotive forces) and time inversion (dissipative and
gyrotropic forces).
Following this derivation, the equation for the AFDW

momentum is given by Px ∝ −
R ð∂θ=∂xÞ_θdx [14], instead

of the explicit Eq. (2) for the AFDW profile. Doing this, one
obtains that for a steady moving texture, Px ∝ v=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
; i.e., the dynamics is Lorentz invariant [14,15].

The corresponding equation of motion takes the form

dPx

dt
¼ −αGγHexPx þ Fx; ð7Þ

where Fx is the effective force that we specify below for
each case. The detailed derivation of Eq. (7) is given in the
Ref. [34], as are explicit expressions for external forces
and the AFDW mass, MAFDW ∝ 1=Hex. From Eq. (7) the
relaxation time of the AFDW is given by τAF ¼ 1=αGγHex.
While both the mass and relaxation time are strongly sup-
pressed in the AF due to exchange, the ratio MAFDW=τAF ¼
αGMsS=γxDW is independent of Hex and is the same as in
the FMDW (see Ref. [34]). This implies that the AFDW
and FMDW mobilities below the Walker breakdown are
comparable, as shown earlier in Eqs. (5) and (6).
Equation (7) shows the Lorentz invariant relativistic

character of AF dynamics, where the width of the AFDW
depends on its velocity; it shrinks by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
.

To compare the effects of Néel and Zeeman fields, we
consider the dynamics of the 90° AFDW. Both fields
remove the degeneracy of the states L1⊥L2 and thus
could produce the effective force per area, Fx ¼ wðL1Þ −
wðL2Þ [see also Figs. 1(c) and 1(d)]. The possible ranges of
the fields are limited by the critical values at which one of
the equilibrium states disappears: by the spin-flop field,
Hsf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HanHex

p
, in the case of the Zeeman field, and by

Han in the case of the Néel field. If both fields are applied
parallel to one of the easy axes [Figs. 1(c) and 1(d)], they
can compete with or add to each other, depending on the
sign of the Néel field (sign of the applied current), and from
Eq. (7) the velocity of steady motion is

vAFsteady ¼ c
BNeel − B2

Zee=ð2HexÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2GHanHex þ ½BNeel − B2

Zee=ð2HexÞ�2
p : ð8Þ

Figure 3 shows the field dependence of the velocity
calculated from Eq. (3) (180° AFDW) and Eq. (8) (90°

AFDW) for Mn2Au taking Hex ¼ 1307 T [40], in-plane
Han ¼ 0.03 T [41], and setting αG ¼ 10−3.
The 3-orders-of-magnitude difference in the effective

force occurs due to the exchange reduction of the Zeeman-
field effects in an AF. As a result, the contribution of the
Zeeman field to the domain wall velocity (magenta line in
Fig. 3) is vanishingly small compared to the contribution of
the Néel field (green-blue line). Experimentally, the effec-
tiveness of the Néel field compared to the Zeeman field
has been observed for current-induced reconfiguration of
90° rotated domains in AF CuMnAs [3]. From microscopic
calculations of the Néel field in CuMnAs [3], the AF states
were switched by currents corresponding to BNeel ∼ 1 mT,
while the Zeeman field up to 12 T was not sufficient for
switching.
We also note that the maximum domain wall velocity

observed up to now in the synthetic AFs was at current
densities 3 × 108 A=cm2 [20]. From our calculations, the
same AFDW velocity in bulk AF Mn2Au corresponds to a
staggered spin-orbit field of 0.07 mT, which corresponds to
a current density of 3.5 × 105 A=cm2 [3].
Another experimentally relevant calculation is the

domain wall displacement driven by short pulses. In
Fig. 4, a single rectangular pulse is delivered with a field
magnitude corresponding to a steady-state domain wall
velocity of 250 m=s (the maximum FMDW velocity
reached in experiment [42]). For the AFDW we consider
the Néel field, for the FMDW the Zeeman field, and the
relaxation times for the AF and FM are τAF ¼ 1 ps and
τFM ¼ 1 ns, respectively. Although the ultimate displace-
ment of both the FMDW and the AFDW is the same, the
AFDW attains it much faster due to its low mass and the
resulting weak AFDW inertia. The favorable characteristics
of AFDW dynamics compared to FMDW is more pro-
nounced at short pulses (≪ τFM), as shown in Fig. 4.
The results presented here open a new way to manipulate

AFDWs by electrical currents. This may enable future
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spintronic devices utilizing fast AFDWmotion and serve as
a practical tool for experimentally investigating spin
dynamics of AF textures.
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FIG. 4. Shift of (a) an AFDW (magenta lines) and (b) a FMDW
(blue lines) under the action of a field pulse (duration of pulse
shown as grey region). Field values in both cases correspond to
the steady velocity of 250 m=s in the dc field. Relaxation times
are τAF ¼ 1 ps and τFM ¼ 1 ns for AF and FM, respectively. In
(a) the pulse duration τ ¼ 2 ps is much smaller than the
relaxation time of FM (τFM) but larger than τAF. The inset shows
the time dependence at large time scales. In (b) the pulse duration
τ ¼ 2 ns is larger than τFM ≫ τAF.
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