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We propose a class of photonic Floquet topological insulators based on staggered helical lattices and an
efficient numericalmethod for calculating their Floquet band structure. The lattices support anomalous Floquet
topological insulator phases with vanishing Chern number and tunable topological transitions. At the critical
point of the topological transition, the band structure hosts a single unpaired Dirac cone, which yields a variety
of unusual transport effects: a discrete analogue of conical diffraction, weak antilocalization not limited by
intervalley scattering, and suppression of Anderson localization. Unlike previous designs, the effective gauge
field strength can be controlled via lattice parameters such as the interhelix distance, significantly reducing
radiative losses and enabling applications such as switchable topological waveguiding.
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Photonic topological insulators (PTIs) are an emerging
class of photonic devices possessing topologically non-
trivial gapped photonic band structures [1–18], analogous
to single-particle electronic band structures of topological
insulators [19]. They have potential applications as robust
unidirectional or polarization-filtered waveguides, and as
scientific platforms for probing topological effects inac-
cessible in condensed-matter systems. In the technologi-
cally important optical frequency regime, only two PTIs
have been demonstrated in experiment: arrays of helical
optical waveguides [10], and coupled ring resonators
[11–13,15,17]. These two different designs each possess
unique advantages. Waveguide array PTIs, for instance,
allow the propagation dynamics of topological edge states
to be directly imaged [10]. The design of the waveguide
array PTI is based on the “Floquet topological insulator”
concept [20–23], which originally described quantum
systems with time-periodic Hamiltonians; the idea is that
topologically nontrivial states can be induced via periodic
driving [20–23], rather than via magnetic or spin-orbit
effects in a static Hamiltonian. In the PTI, the Hamiltonian
describes the classical evolution of the optical fields in the
waveguide array, and its periodic drive arises from the
helical twisting of the waveguides [10,24].
Floquet topological insulators are highly interesting

because they exhibit topological phenomena that have no
counterparts in static Hamiltonians [25–32]. For example,
there can exist two-dimensional (2D) “anomalous Floquet
insulator” (AFI) phases that are topologically nontrivial—
including hosting protected edge states—despite all bands
having zero Chern number [15,17,26–30]. When disorder is
introduced, the anomalous topological edge states become
the only extended states, with all other states localized [31].

At critical points between topological phases, Floquet band
structures can exhibit unpaired Dirac cones, defeating the
“fermion-doubling” principle [33]. It is thus noteworthy that
these unusual features were not accessed by the experiments
of Ref. [10]. The waveguide array was always observed in a
standard Chern insulator phase generated by weak periodic
driving; transitions to any other topologically nontrivial
phase were unachievable because the strength of the
effective gauge field was controlled by the bending radius
of the helical waveguides. Radiative losses, which increase
exponentially with bending [34], came to dominate before
any “strong field” topological transitions were reached [10].
This paper describes a class of waveguide arrays over-

coming the above limitations, allowing for the observation
of topological transitions between conventional insulator,
Chern insulator, and AFI phases, as well as unpaired Dirac
cones at the transition points. To the best of our knowledge,
AFI phases and unpaired Dirac cones have never been
demonstrated in optical-frequency PTIs. Continuously
tuned transitions between trivial and nontrivial topological
phases, or into an AFI phase, have never been observed in
any 2D PTI. Our design is based on “staggered” lattices
of helical waveguides, with each of the two sublattices
having a different helix phase. The two-band Floquet band
structure can be tuned to different topological phases by
varying the nearest-neighbor coupling strength or sublattice
asymmetry. We can access different topological phases
while maintaining small bending radii; the bending losses
for reaching the conventional insulator to the AFI transition
are reduced by around 2 orders of magnitude compared to
the topological transition discussed in Ref. [10]. This
design thus shows promise for low-loss topological wave-
guides that are switchable (e.g., via optical nonlinearity).
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The critical Floquet band structure hosts an unpaired
Dirac cone. This is unlike all other previously observed
photonic band-crossing points, which involve either paired
Dirac points [35], quadratic dispersion [36], or an attached
flat band [37,38]. The unpaired Dirac cone is reminiscent of
the chiral band structure of the Haldane model with broken
parity and time-reversal symmetries [39], or surface states of
three-dimensional topological insulators [19,40]. Here, it
arises from a Floquet process, and specifically the fact that
the Floquet band structure is a “quasienergy” spectrum (see
below). Wave propagation in the critical PTI is immune to
the intervalley scattering that occurs with pairs of Dirac
cones [41]. Based on this, we demonstrate a novel “discrete”
conical diffraction effect, generated by exciting a single unit
cell, as well as resistance to localization in the presence of
short-range disorder [42]. We note that although similar
Floquet band structures that can host unpaired Dirac cones
have previously been studied theoretically [13,21,33], those
studies lacked information about the propagation dynamics
of the Dirac cone states, which we can investigate using our
experimentally realistic waveguide array models.
An example of the staggered helix design is the square

lattice shown in Figs. 1(a) and 1(b). There are two
sublattices, forming a checkerboard pattern; the helices

on each sublattice are shifted relative to each other in
the z direction, by half a helix cycle. This produces a
z-dependent separation between waveguides, so that each
waveguide approaches its four nearest neighbors in turn at
each quarter cycle. Similar schemes can be implemented in
other lattice geometries, such as a honeycomb lattice [27].
For simplicity, this Letter focuses on the square lattice.
First, we model the lattice in a tight-binding approxi-

mation similar to a 2D discrete-time quantum walk [43].
Since the interwaveguide couplings are evanescent, we
assume each waveguide couples to one neighbor at a
time. The Floquet evolution operator, Û, is defined by
ψðzþ ZÞ ¼ ÛψðzÞ, where Z is the helix period and ψ ¼
ðψA;ψBÞ are the tight-binding amplitudes on each
sublattice. Û factorizes into a series of independent two-
waveguide couplings, separated by free evolution,

Û ¼ Ŝð−k−ÞŜð−kþÞŜðk−ÞŜðkþÞ; ð1Þ

with the notation k� ≡ ðkx � kyÞ=
ffiffiffi

2
p

, where kx;y are the
crystal momenta in units of the inverse waveguide sepa-
ration in the absence of modulation, and

ŜðκÞ ¼
�

eiΔ cos θc −ieiðΔþκÞ sin θc
−ie−iðΔþκÞ sin θc e−iΔ cos θc

�

; ð2Þ

where Δ is a small detuning between the sublattice
propagation constants (which can be implemented by
having different waveguide refractive indices), and θc is
the coupling strength. Since Û is unitary, its eigenvalues
have the form eiβðkÞ where βðkÞ is the quasienergy
spectrum. Note that this model resembles the 2D quantum
walk described in Ref. [26], with time evolution replaced
by propagation in z, and that ŜðκÞ is the most general
scattering matrix permitted by the lattice symmetries [44].
Figure 1(c) shows the phase diagram of the quasienergy

band structure, as a function of Δ and θc. The system is a
trivial insulator at weak couplings, and a topological
insulator above a critical coupling strength [44]. At the
transition, the band structure has an unpaired Dirac cone at
the Γ point, as shown in Fig. 1(d). Increasing Δ pushes the
two bands away from quasienergy β ¼ 0 and closer
towards reconnecting at β ¼ �π, reducing the critical
coupling strength. At θc ¼ π=2, the bands merge into a
topological flat band [26].
The Δ ¼ 0 case is particularly interesting. Here, the

sublattice symmetry enforces a line degeneracy at the
Brillouin zone edge, so there is a single band gap. For
small θc, the spectrum resembles that of an unmodulated
square lattice with a single Bloch band folded back onto
itself. At the critical point θc ¼ π=4, the formation of the
Dirac cone leads to a completely gapless spectrum. A long-
wavelength expansion of Û ≈ exp½−iðĤD − πÞ� about the Γ
point yields an effective Dirac Hamiltonian,

FIG. 1. A square staggered lattice of helical waveguides.
(a) Schematic of two neighboring waveguides, twisting clock-
wise along the propagation axis z with relative phase shift π.
(b) Cross section of the lattice potential at each helix quarter
cycle, with the circular trajectories overlaid. (c) Phase diagram of
the tight-binding model, in terms of the sublattice asymmetry Δ
and coupling strength θc. Red dots indicate the parameters for the
band diagrams in Fig. 2. The nontrivial phase forms an AFI along
the Δ ¼ 0 line and a Chern insulator for Δ ≠ 0. (d) Tight-binding
bulk spectrum at the black square in (c), along the phase
boundary.
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ĤDðkÞ ¼ −kxσ̂z þ kyσ̂y − 4ðθc − π=4Þσ̂x; ð3Þ

where σ̂x;y;z are the Pauli matrices. For θc > π=4, the
system is an AFI [26–30] with unidirectional topological
edge states.
To apply these ideas to a realistic photonic lattice, such

as femtosecond laser-written waveguides in fused silica
[10,29,45], we now go beyond the tight-binding descrip-
tion. A photonic lattice is described by a paraxial field
ψðr; zÞ governed by the Schrödinger equation

i∂zψ ¼ −
1

2k0
∇2⊥ψ −

k0δnðx; y; zÞ
n0

ψ ; ð4Þ

where ∇2⊥ ¼ ∂2
x þ ∂2

y, k0 ¼ 2πn0=λ, and the refractive
index is n0 ¼ 1.45 at wavelength λ ¼ 633 nm, with modu-
lation δn ∼ 7.5 × 10−4. Similar to real experiments, we give
the waveguides elliptical cross sections with axis diameters
11 and 4 μm [10], as shown in Fig. 1(b). They form a
square lattice with mean waveguide separation a, helix
radius R0, and pitch Z. We can increase the effective
coupling, θc, by increasing 1=a, R0, or Z.
Direct calculation of the Floquet band structure for a

continuummodel (as opposed to a tight-binding model) is a
nontrivial task, because the quasienergies βn;k are defined
modulo 2π=Z, so there is no ground state for numerical
eigensolvers to converge on, and continuum (unguided)
modes enter in an uncontrolled way. We devised an
efficient method for performing this calculation by truncat-
ing the evolution operator Û to a basis formed by the static
Bloch waves at z ¼ 0. This amounts to a quasistatic
approximation neglecting coupling to unbound (con-
tinuum) modes. Bending losses can be estimated via the
norm of the Floquet evolution operator eigenvalues, by
findings its deviation from unitarity. Further details are
given in Supplemental Material [44].
We now fix R0 ¼ 3 μm and Z ¼ 2 cm. This yields a loss

of ≲0.02 dB=cm, independent of topological phase, which
we tune by varying a and/or Δ. By contrast, the strength of
the effective gauge field in the unstaggered lattice of
Ref. [10] was tuned by increasing R0, which also increased
the bending losses exponentially [34]. That limited the
system to the “weak field” perturbative regime; losses
exceeded 3 dB=cm before reaching a predicted strong field
topological transition (between two Chern insulators),
making that transition unobservable.
Figure 2 shows the band structure for a strip geometry.

For comparison, results from the truncated-Bloch method
are plotted together with the results from a fitted tight-
binding model [44]. The two methods agree well, particu-
larly in the weak-coupling regime. In Fig. 2(a), we see that
the system is a trivial insulator, with a single band and a
single gap (note that the spectrum is periodic along the β
axis), whereas in Fig. 2(b), the gap has closed and
reopened, inducing chiral edge states centered at β ∼ π.

This is the AFI phase; the Chern number of the single band
is necessarily 0, despite the presence of chiral edge states.
The transition point is shown in Fig. 2(c), which features an
unpaired Dirac point at the center of the Brillouin zone.
Figure 2(d) shows a Δ ≠ 0 case, corresponding to a Chern
insulator; there is both a trivial gap and a nontrivial gap, and
the two bands have Chern numbers 1 and −1, as in the
Haldane model [46].
The topological transitions can be probed via beam

propagation experiments. Figure 3 shows beam propaga-
tion simulations with a single waveguide initially excited
along the edge. For large a, with the lattice in the trivial
phase, the excitation simply spreads into the bulk. Upon
decreasing a, we observe a strongly localized mode that

FIG. 2. Band structures for a semi-infinite strip ten unit
cells wide. Blue points are obtained from the continuum
model, and red curves from the tight-binding model. (a) Trivial
insulator (a ¼ 25 μm, θc ≈ 0.17π, Δ ¼ 0). (b) Anomalous Flo-
quet insulator (a ¼ 20 μm, θc ≈ 0.4π, Δ ¼ 0). (c) Critical phase
(a ¼ 23 μm, θc ≈ π=4, Δ ¼ 0). (d) Chern insulator (a ¼ 23 μm,
θc ≈ 0.15π, Δ ≈ π=4).

FIG. 3. Output intensity profile after propagation through 5Z,
with one edge site initially excited (red arrow). Reducing the
lattice period causes a transition into an anomalous Floquet
insulator phase with topological edge states.
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propagates unidirectionally along the edge, including
around corners. This is a clear signature of a topological
transition to the AFI, which has never been experimentally
demonstrated in a 2D photonic lattice. We stress that
varying a is just one of many possible tuning methods.
Because of the strong sensitivity of the evanescent coupling
strength to waveguide mode localization, there are other
interesting ways to achieve controllable switching between
topological phases, such as the Kerr effect or thermal
tuning.
It is also interesting to study the behavior of the lattice at

the critical point of the topological transition, where the
quasienergy band structure contains an unpaired Dirac cone
at the Brillouin zone center. A direct method for revealing
the existence of a Dirac cone is conical diffraction, which
involves constructing an initial wave packet from Dirac
cone states, which then evolves (under linear relativistic
dispersion) into a ring with constant thickness and nonzero
phase winding. In honeycomb lattices with two Dirac
cones, conical diffraction requires selectively exciting
one cone, e.g., using a tilted spatially structured input
beam [35]. With an unpaired Dirac cone, however, we can
generate conical diffraction using simple unstructured
Gaussian beams at normal incidence, as shown in
Figs. 4(a) and 4(b). This exclusively excites “pseudospin-
up” Dirac modes governed by Eq. (3), with chirality
determined by the chirality of the modulation δnðr; zÞ.
This intrinsic chirality is revealed by the phase of the
diffracted field. Pseudospin angular momentum generates
an optical vortex in the “cross-polarized” pseudospin-down
component of the diffracted field, with vortex charge
sensitive to the chirality of the Dirac dispersion [47].
Here, pseudospin down corresponds to light scattered into
the second Brillouin zone, readily measured via Fourier

filtering [44]. Figure 4(c) shows the phase profile, exhibit-
ing the predicted topological charge.
What happens as we reduce the width of the initial

Gaussian excitation? One might expect conical diffraction
to be destroyed, since Eq. (3) is based on an effective-mass
(carrier-envelope) approximation in the transverse plane.
While that is the case for static Hamiltonians, here
diffraction is preserved by the unique features of the
Floquet band structure: the spectrum is entirely gapless,
and has no local band maxima or minima. Consequently,
the band velocity is nonzero almost everywhere, and the
initial excitation evolves into a discrete conical-like dif-
fraction pattern with a dark central spot and nonzero vortex
charge. As shown in Figs. 4(d)–4(f), this holds true even
when the initial excitation is reduced to a single unit cell.
Wave propagation at the critical point should be intrinsi-

cally robust against disorder, due to the enforced chirality
and absence of band edges. To show this, we introduce
random site-to-site fluctuations in the waveguide detunings
of the tight-binding model (1). For weak disorder, Dirac
modes experience suppressed backscattering, a phenome-
non known as “weak antilocalization” [42]. Usually, weak
antilocalization disappears when the disorder is short
ranged, due to intervalley scattering [41]. However,
Fig. 5(a) shows that weak antilocalization persists in our
system even for completely short-range (site-specific)
disorder. Furthermore, Anderson localization normally sets
in at large disorder strengths, commencing at the band
edges. In Fig. 5(b), we probe the localization of the tight-
binding eigenmodes by their mode participation numbers,
and find that localization is defeated in the critical Δ ¼ 0
system due to the lack of band edges. For Δ ≠ 0, the
Floquet band structures have well-defined band edges, and
we correspondingly observe Lifshitz tails of strongly
localized modes [44].

FIG. 4. Conical diffraction arising from the unpaired Dirac
point. In the upper panels, the initial excitation is Gaussian; in the
lower panels, only one unit cell is excited. [(a) and (d)] Input and
[(b) and (e)] output beam intensity. [(c) and (f)] Phase profile of
the output cross-polarized pseudospin component, showing
clockwise phase circulation (black arrows). The lattice size is
16 × 16 unit cells, and the propagation distance is L ¼ 6Z.

FIG. 5. Disorder insensitivity at the critical point. (a) Fourier
intensity of a broad (width 5a) probe beam, after propagating 60Z
through a weakly disordered [44] 100 × 100 lattice, averaging
over 20 disorder realizations. A weak antilocalization dip occurs
in the backscattering direction (white arrow); the color scale
saturates in the forward direction. (b) Participation number P
normalized by number of waveguides 2N2 ¼ 1800, for the tight-
binding eigenmodes of a strongly disordered lattice. Localization
is absent for Δ ¼ 0, but Lifshitz localization tails appear for
Δ ¼ π=8.
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In summary, we have shown how to realize Floquet PTIs
in staggered helical waveguide arrays. Novel topological
transitions, beyond those characterized by Chern numbers,
can be accessed by tuning lattice parameters other than the
bending radius; this allows for low-loss operation and
raises the prospect of nonlinear or actively controllable,
robust topological waveguide devices [48]. The many
interesting behaviors of the unpaired Dirac cone at the
critical point, including discrete conical diffraction and
suppression of Anderson localization, are worth probing in
detail in future experiments.

We are grateful to N. H. Lindner and H. Wang for helpful
discussions. This research was supported by the Singapore
National Research Foundation under Grant No. NRFF2012-
02, and by the Singapore MOE Academic Research Fund
Tier 3 Grant No. MOE2011-T3-1-005. M. C. R. acknowl-
edges the support of the National Science Foundation under
Grant No. ECCS-1509546.

[1] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
photonics, Nat. Photonics 8, 821 (2014). Note that the term
insulator indicates only that the photonic band structure is
gapped; there is no notion of a Fermi level since photons are
bosonic.

[2] F. D. M. Haldane and S. Raghu, Possible Realization of
Directional Optical Waveguides in Photonic Crystals with
Broken Time-Reversal Symmetry, Phys. Rev. Lett. 100,
013904 (2008).

[3] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystals, Phys. Rev. A 78,
033834 (2008).

[4] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
Observation of unidirectional backscattering-immune topo-
logical electromagnetic states, Nature (London) 461, 772
(2009).

[5] N. Malkova, I. Hromada, X. Wang, G. Bryantand Z. Chen,
Observation of optical Shockley-like surface states in
photonic superlattices, Opt. Lett. 34, 1633 (2009).

[6] R. O. Umucalılar, and I. Carusotto, Artificial gauge field for
photons in coupled cavity arrays, Phys. Rev. A 84, 043804
(2011).

[7] K. Fang, Z. Yu, and S. Fan, Realizing effective magnetic
field for photons by controlling the phase of dynamic
modulation, Nat. Photonics 6, 782 (2012).

[8] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin and O.
Zilberberg, Topological states and adiabatic pumping in
quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).

[9] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Photonic topological
insulators, Nat. Mater. 12, 223 (2013).

[10] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature (London)
496, 196 (2013).

[11] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,
Imaging topological edge states in silicon photonics, Nat.
Photonics 7, 1001 (2013).

[12] G. Q. Liang and Y. D. Chong, Optical Resonator Analog of
a Two-Dimensional Topological Insulator, Phys. Rev. Lett.
110, 203904 (2013).

[13] M. Pasek and Y. D. Chong, Network models of photonic
Floquet topological insulators, Phys. Rev. B 89, 075113
(2014).

[14] C. He, X.-C. Sun, X.-P. Liu, M.-H. Lu, Y. Chen, L. Feng,
and Y.-F. Chen, Photonic topological insulator with broken
time-reversal symmetry, Proc. Natl. Acad. Sci. U.S.A. 113,
4924 (2016).

[15] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D.
Chong, Measurement of a Topological Edge Invariant in a
Microwave Network, Phys. Rev. X 5, 011012 (2015).

[16] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S.
Nolte, M. S. Rudner, M. Segev, and A. Szameit, Observa-
tion of a Topological Transition in the Bulk of a non-
Hermitian System, Phys. Rev. Lett. 115, 040402 (2015).

[17] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, J. D. Joannopoulos,
M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang,
Probing the limits of topological protection in a designer
surface plasmon structure, Nat. Commun. 7, 11619 (2016).

[18] L.-H. Wu and X. Hu, Scheme for Achieving a Topological
Photonic Crystal by Using Dielectric Material, Phys. Rev.
Lett. 114, 223901 (2015).

[19] M. Z. Hasan and C. L. Kane, Colloquium: topological
insulators, Rev. Mod. Phys. 82, 3045 (2010); X.-L. Qi
and S.-C. Zhang, Topological insulators and superconduc-
tors, Rev. Mod. Phys. 83, 1057 (2011).

[20] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene,
Phys. Rev. B 79, 081406(R) (2009).

[21] N. H. Lindner, G. Refael, and V. Galitski, Floquet topo-
logical insulator in semiconductor quantum wells, Nat.
Phys. 7, 490 (2011).

[22] Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Floquet
Spectrum and Transport through an Irradiated Graphene
Ribbon, Phys. Rev. Lett. 107, 216601 (2011).

[23] J. Cayssol, B. Dóra, F. Simon, and R.Moessner, Floquet topo-
logical insulators, Phys. Status Solidi RRL 7, 101 (2013).

[24] I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Yu. S.
Kivshar, Light propagation and localization in modulated
photonic lattices and waveguides, Phys. Rep. 518, 1 (2012).

[25] M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal
high-frequency behavior of periodically driven systems:
from dynamical stabilization to Floquet engineering, Adv.
Phys. 64, 139 (2015); R. Roy and F. Harper, Periodic table
for Floquet topological insulators, arXiv:1603.06944.

[26] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,
Anomalous Edge States and the Bulk-Edge Correspondence
for Periodically Driven Two-Dimensional Systems, Phys.
Rev. X 3, 031005 (2013).

[27] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topo-
logical characterization of periodically driven quantum
systems, Phys. Rev. B 82, 235114 (2010).

[28] J. K. Asbóth, B. Tarasinski, and P. Delplace, Chiral sym-
metry and bulk-boundary correspondence in periodically
driven one-dimensional systems, Phys. Rev. B 90, 125143
(2014).

[29] P. Titum, N. H. Lindner, M. C. Rechstman, and G. Refael,
Disorder-Induced Floquet Topological Insulators, Phys.
Rev. Lett. 114, 056801 (2015).

PRL 117, 013902 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 JULY 2016

013902-5

http://dx.doi.org/10.1038/nphoton.2014.248
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/10.1364/OL.34.001633
http://dx.doi.org/10.1103/PhysRevA.84.043804
http://dx.doi.org/10.1103/PhysRevA.84.043804
http://dx.doi.org/10.1038/nphoton.2012.236
http://dx.doi.org/10.1103/PhysRevLett.109.106402
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1103/PhysRevLett.110.203904
http://dx.doi.org/10.1103/PhysRevLett.110.203904
http://dx.doi.org/10.1103/PhysRevB.89.075113
http://dx.doi.org/10.1103/PhysRevB.89.075113
http://dx.doi.org/10.1073/pnas.1525502113
http://dx.doi.org/10.1073/pnas.1525502113
http://dx.doi.org/10.1103/PhysRevX.5.011012
http://dx.doi.org/10.1103/PhysRevLett.115.040402
http://dx.doi.org/10.1038/ncomms11619
http://dx.doi.org/10.1103/PhysRevLett.114.223901
http://dx.doi.org/10.1103/PhysRevLett.114.223901
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/10.1103/PhysRevLett.107.216601
http://dx.doi.org/10.1002/pssr.201206451
http://dx.doi.org/10.1016/j.physrep.2012.03.005
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://arXiv.org/abs/1603.06944
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.90.125143
http://dx.doi.org/10.1103/PhysRevB.90.125143
http://dx.doi.org/10.1103/PhysRevLett.114.056801
http://dx.doi.org/10.1103/PhysRevLett.114.056801


[30] D. Carpentier, P. Delplace, M. Fruchart, and K. Gawedzki,
Topological Index for Periodically Driven Time-Reversal
Invariant 2D Systems, Phys. Rev. Lett. 114, 106806 (2015).

[31] P. Titum, E. Berg, M. S. Rudneer, G. Refael, and N. H.
Lindner, The Anomalous Floquet-Anderson Insulator as a
Nonadiabatic Quantized Charge Pump, Phys. Rev. X 6,
021013 (2016).

[32] H. Wang, L. Zhou, and Y. D. Chong, Floquet Weyl phases in
a three-dimensional network model, Phys. Rev. B 93,
144114 (2016).

[33] Y. D. Chong and M. C. Rechtsman, Tachyonic dispersion in
coherent networks, J. Opt. 18, 014001 (2016).

[34] D. Marcuse, Radiation loss of a helically deformed optical
fiber, J. Opt. Soc. Am. 66, 1025 (1976).

[35] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and
D. N. Christodoulides, Conical Diffraction and Gap Solitons
in Honeycomb Lattices, Phys. Rev. Lett. 98, 103901
(2007).

[36] Y. D. Chong, X.-G. Wen, and M. Soljačić, Effective theory
of quadratic degeneracies, Phys. Rev. B 77, 235125 (2008).

[37] X. Huang, Y. Lai, Z. H. Hang, H. Zhen, and C. T. Chan,
Dirac cones induced by accidental degeneracy in photonic
crystals and zero-refractive-index materials, Nat. Mater. 10,
582 (2011).

[38] S.-L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and
M. Soljavić, Larger-area single-mode photonic crystal sur-
face-emitting lasers enabled by an accidental Dirac point,
Opt. Lett. 39, 2072 (2014).

[39] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the, Parity
Anomaly, Phys. Rev. Lett. 61, 2015 (1988).

[40] L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos,
and M. Soljačić, Symmetry-protected topological photonic
crystal in three dimensions, Nat. Phys. 12, 337 (2016).

[41] H. Suzuura and T. Ando, Crossover from Symplectic to
Orthogonal Class in a Two-Dimensional Honeycomb
Lattice, Phys. Rev. Lett. 89, 266603 (2002).

[42] G. Bergmann, Weak antilocalization—an experimental
proof for the destructive interference of rotated spin 1=2,
Solid State Commun. 42, 815 (1982).

[43] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler,
Exploring topological phases with quantum walks, Phys.
Rev. A 82, 033429 (2010); T. Kitagawa, M. A. Broome,
A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A.
Aspuru-Guzik, E. Demler, and A. G. White, Observation
of topologically protected bound states in photonic quantum
walks, Nat. Commun. 3, 882 (2012).

[44] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.013902 for analy-
sis of the tight binding model, detailed numerical methods,
and further discussion of conical diffraction and disorder.

[45] A. Szameit and S. Nolte, Discrete optics in femtosecond-
laser-written photonic structures, J. Phys. B 43, 163001
(2010).

[46] T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in
discretized Brillouin zone: efficient method of computing
(spin) Hall conductances, J. Phys. Soc. Jpn. 74, 1674
(2005).

[47] D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L.
Tang, J. Xu, M. Ablowitz, N. K. Efremidis, and Z.
Chen, Unveiling pseudospin and angular momentum in
photonic graphene, Nat. Commun. 6, 6272 (2015); F. Diebel,
D. Leykam, S. Kroesen, C. Denz, and A. S. Desyatnikov,
Conical Diffraction and Composite Lieb Bosons in Photonic
Lattices, Phys. Rev. Lett. 116, 183902 (2016).

[48] Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Self-
Localized States in Photonic Topological Insulators, Phys.
Rev. Lett. 111, 243905 (2013).

PRL 117, 013902 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 JULY 2016

013902-6

http://dx.doi.org/10.1103/PhysRevLett.114.106806
http://dx.doi.org/10.1103/PhysRevX.6.021013
http://dx.doi.org/10.1103/PhysRevX.6.021013
http://dx.doi.org/10.1103/PhysRevB.93.144114
http://dx.doi.org/10.1103/PhysRevB.93.144114
http://dx.doi.org/10.1088/2040-8978/18/1/014001
http://dx.doi.org/10.1364/JOSA.66.001025
http://dx.doi.org/10.1103/PhysRevLett.98.103901
http://dx.doi.org/10.1103/PhysRevLett.98.103901
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1038/nmat3030
http://dx.doi.org/10.1038/nmat3030
http://dx.doi.org/10.1364/OL.39.002072
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1038/nphys3611
http://dx.doi.org/10.1103/PhysRevLett.89.266603
http://dx.doi.org/10.1016/0038-1098(82)90013-8
http://dx.doi.org/10.1103/PhysRevA.82.033429
http://dx.doi.org/10.1103/PhysRevA.82.033429
http://dx.doi.org/10.1038/ncomms1872
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.013902
http://dx.doi.org/10.1088/0953-4075/43/16/163001
http://dx.doi.org/10.1088/0953-4075/43/16/163001
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1038/ncomms7272
http://dx.doi.org/10.1103/PhysRevLett.116.183902
http://dx.doi.org/10.1103/PhysRevLett.111.243905
http://dx.doi.org/10.1103/PhysRevLett.111.243905

