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We show that the nonlinear stage of modulational instability induced by parametric driving in the
defocusing nonlinear Schrédinger equation can be accurately described by combining mode truncation and

averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex
hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical
integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-

Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs
outside the bandwidth of the resonance (or Arnold tongues) arising from the linearized Floquet analysis.
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Following the pioneering studies by Faraday and Lord
Rayleigh [1], the universal nature of parametric resonances
(PRs) induced by periodic variations of a system parameter
[2] was established in several contexts [3—13]. While the
concept of PR originates in the linear world [14], PRs
deeply impact also the behavior of nonlinear conservative
systems. However, the full nonlinear dynamics of PRs is
relatively well understood only for low-dimensional
Hamiltonian systems [2,15,16]. Conversely, the analysis
of extended systems described by partial differential
equations with periodicity in the evolution variable [17]
is essentially limited to determine the region of parametric
instability (Arnold tongues) via Floquet analysis [18-21],
while the nonlinear stage of PR past the linearized growth
of the unstable modes remains mostly unexplored.

In this Letter, taking the periodic defocusing nonlinear
Schrodinger equation (NLSE) as a widespread example
ranging from, e.g., atom condensates [12,19,20,22] to
optics [18,21,23,24], we show that the PR gives rise to
quasiperiodic evolutions which exhibit on average Fermi-
Pasta-Ulam (FPU) recurrence [25] with a remarkably
complex (but ordered) underlying phase-plane structure.
Such a structure describes the continuation into the non-
linear regime of the modulational instability (MI) of a
background solution, uniquely due to the parametric
forcing. A by-product of this structure is the existence
of breatherlike solutions [26], that suggests the intriguing
possibility of observing rogue waves [27,28], in the
defocusing NLSE [29]. On the other hand, the richness
of such a structure allows us to predict that optimal
parametric amplification occurs at a critical frequency
where the system lies off resonance (outside the PR
bandwidth). Our approach retains its validity in the regime
of strong parametric driving, where the system is found to
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exhibit a remarkably ordered structure despite its broken
translational symmetry and integrability. In this sense, the
physics differs from other integrable models exhibiting a
complex nonlinear dynamics of MI already in the undriven
regime (e.g., focusing NLSE [26,30-36]), around which
chaos can develop under weak periodic perturbations
[31,37,38].
We consider the following periodic NLSE:

Oy _PRPy o
5.~ 2 g Tl =0. (1)

referring, without loss of generality, to the notation used in
optical fibers in suitable scaled units. The dispersion is
B(2) = Bay + Bunf 1 (2), with positive average f3,, > 0 [39];
fa(z) has period A = 27/k,,, zero mean, and minimum —1.
The method can be easily extended to deal also with
periodic nonlinearities. We are interested in the nonlinear
evolution of perturbations of the stationary solution
wo = VPexp(iPz) with power P = |y |> [40]. First,
we briefly recall the origin of PRs in this system
[18,23,24]. MI of y, can be analyzed by inserting in
Eq. (1) the ansatz y = yq + a(z, 1), a being a perturbation
at frequency @ of the form a = [e(z)exp(imt)+
€3(z) exp(—iwt)] exp(iPz). Linearizing around x(z) =
[€1(2), €2(z)]" gives a A-periodic problem that can be
treated by means of the Floquet theory [18,23]. In the
absence of perturbation (f,, = 0), x(z) exhibits only phase
changes ruled by imaginary eigenvalues +ik, where k> =
Pay®*/2(By@?/2 + 2P) rtepresents the squared spatial
frequency of the evolution. As a result, y is stable.
Any arbitrarily small perturbation f,, # 0 induces, regard-
less of its shape f,(z), instability at multiple frequencies
(p=1,2,...):
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which fulfil the PR condition k, = 2k(®,)/ p, analogous to
the Mathieu equation (though for spatial frequencies,
instead of temporal ones) [2]. The Floquet analysis gives
rise to instability islands, or Arnold tongues, in the plane
(@, p,,), with @, representing the tip of the tongues, as
shown in Fig. 1(a), taking as an example f (z) = cos(k,z)
and p =1, 2. Figure 1(b) shows the instability gain
spectrum gp(w) at S, = 0.5, which accurately predicts
the spontaneous growth of MI bands from white noise,
obtained from NLSE integration [inset in Fig. 1(b)].

Two aspects of the PR instability are of crucial impor-
tance: (i) It exhibits narrow-band features around the
tongue tip frequencies w,,; (ii) different w, are generally
incommensurate, which greatly reduces the possibility that
the harmonics of a probed frequency experience exponen-
tial amplification due to higher-order bands. Under such
circumstances, three-mode truncations constitute a suitable
approach to describe the underlying structure of the
dynamics [32,41-43]. However, unlike uniform media
where the truncation is integrable, in the PR such a
structure can remain hidden owing to the fast phase
variations induced by the parametric driving, which breaks
the integrability of the truncated model, too. In order to
unveil the dynamics, we need to combine the mode
truncation approach with suitable phase transformations
and averaging [44]. We start by substituting in Eq. (1) the
field y = Ay(z) + a,(z) exp(—iwt) + a_,(z) exp(iwt) and
group all nonlinear terms vibrating at frequencies 0, +w,
neglecting higher-order harmonic generation. For the sake
of simplicity, we consider henceforth the case of symmetric
sidebands a; = a_; = A;/v/2, though our analysis and
conclusions straightforwardly extend to the case a; # a_;.
We obtain the following nonautonomous Hamiltonian
system of ordinary differential equations (the dot stands
for d/dz):
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FIG. 1. Results of the linear Floquet analysis for

fa(z) = cos(k,z), A=1, P=1: (a) false color plot showing
first two MI tongues in the plane (®, 3,,) [dashed vertical lines
stand for ®,, p = 1, 2, from Eq. (2)]; (b) section at 3, = 0.5
showing gain curves gp(w). Inset: Spectral output (z = 50) from
NLSE (1) numerical integration, where PRs grow out of white
noise superimposed onto .

where the only conserved quantity, i.e., P = |A|> + |A,]?,
is not sufficient to guarantee integrability. In order to
describe the mode mixing in the pth unstable PR band
beyond the linearized stage, we transform to new phase-
shifted variables u(z) and w(z), defined as

Ao(z) =u(z):  A(z) = w(z)ePl/Der @R (s)
where 5k(z) = f,,@* [§ fa(2')dz’ physically accounts for
the oscillating wave number mismatch of the three-wave
interaction. Then, we exploit the general Fourier expansion
exp(iék(z)] = >_,c, exp(—ink,z), which allows us to cast
Egs. (3) and (4) in the form

—iit = (P + [wP)u + [c, + Fp(2)w?u, (6)

2

—iw = <§+% + \u|2>w + ¢ + Fi(2)]u?w*,  (7)

where  Fy(z) = ),4,coexp[—i(n—p)ksz] and K=
L@ — pky, + 2P measures the mismatch from optimal
linearized amplification. Indeed, x = 0 is equivalent to the
quasi-phase-matching condition f,,@* + 2P = pkgy, where
the quasimomentum pk, associated to the forcing com-
pensates for the average nonlinear wave number mismatch
of the three-wave interaction [24]. In the quasimatched
regime (|| < 1), the dominant mixing terms ¢,w”u* and
ch u*w* in Egs. (6) and (7) are responsible for the growth of
sidebands associated with the PR instability in the pth
band. However, additional contributions to the mixing arise
from the mismatched terms contained in the A-periodic
function F,(z). In order to evaluate their impact, we
generalize the approach of Ref. [44]. We assume 1/k,
to be small and expand u, w in Fourier series u(z) =
Soaun(2)ePki . w(z) =57, w,(z)e™Pk*. Assuming that
w, and u, vary slowly with respect to exp(ik,z), and
the harmonics to be of the order of 1/k, (or smaller,
compared to leading order or spatial average u,, wy), we are
able to express w, and u, through the relations u, =
(1/Pkg)(cp(1—n)/”)wgu(*) and w, = (1/pkg)(c;;(1+n>/
n)udwy, rtespectively, which allow us to obtain a
self-consistent system for u,(z) and wy(z):

—itig = (P + |wo|*)ug + ¢, wiug + a(|wo|* = 2|woue|*)ug,

(8)

2 2

—a(|u0|4 —2|W0M0|2)W0, )
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which shows that the mismatched terms result into an
effective quintic correction weighted by the (small) coef-
ficient a = (1/pky)>_,20(|¢p(1-n)[*/n). Equations (8) and
(9) can be cast in the Hamiltonian form

- _oH, 4 _0H,
T=""5p ~ o

K 3
H, :|cp|;7(1—;7)0052454—5;1——;12—0(77(1—317+27]2),

4
(10)

in terms of fractional sideband power 1 = |wy|> = |A,|?
and overall phase ¢ = Arg[w,(z)] — Argluy(z)] + ¢,/2,
¢p = Al’g{Cp].

Equations (10) constitute an averaged integrable descrip-
tion of the fully nonlinear stage of the instability, which
holds valid regardless of the choice of order p and the
specific function f (z) [45]. Among the different tests that
we have performed, in the following we present the results
obtained for the harmonic case f,(z) = cos(k,z) already
considered in Fig. 1. In this case, the Fourier expansion
explidk(z)] = o2 _oo(=1)", (B /k,) exp(=ink,z)
gives for the primary PR (p = 1), ¢;(w) = —J,(f,,0*/k,)
(hence ¢; = x), and a safe approximation for the quintic
correction is  a(w) & (1/k,)(|col* + |¢1]*/2),  where
co(w) = Jo(Buw?/k,), since ¢ > c,,n > 1.

Explicit solutions of Egs. (10) can be written in terms of
hyperelliptic functions. However, their phase-plane repre-
sentation (level set of H,) along with the bifurcation
analysis are sufficient to gain a full physical insight.
Figure 2 shows the bifurcation diagram, i.e., the value n
of the stationary points (solutions of # = ¢ = 0) versus
frequency w. The instability of the pump mode n =0

1
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FIG. 2. (a) Bifurcation diagram from Egs. (10): sideband
fraction # of unstable (dashed red line) and stable (solid green
line) branches versus . The instability range of the pump mode
n =0 coincides with the bandwidth calculated from Floquet
analysis (gain g, dot-dashed line). Insets (b) and (c): Phase-plane
pictures for (b) @ = 2.15 inside PR gain bandwidth and
(c) @ =2.25, outside PR gain bandwidth, where the topology
is affected by saddle eigenmodulations with 7 # 0. Here p =1
(primary PR), ,, =0.5, A=1,and P = 1.

reflects the PR instability of the order of p. Indeed, n = 0,
¢* = ticos™'[(a—«/2)/|c,|] tum out to be saddle
points of the Hamiltonian H, in the range of frequencies
implicitly determined by the condition —|c,(w)| < a(w)-
k(w)/2 < |c,(w)|, which agree with the PR bandwidth
from linear Floquet analysis [see the comparison in Fig. 2
for p =1]. Within such a range of frequencies, the
accessible portion of the phase plane (1 > 0) is charac-
terized by a heteroclinic separatrix which connects such
saddles, dividing the phase plane into regions of inner and
outer orbits which are similar to those describing librations
and rotations of a standard pendulum, respectively [see
Fig. 2(b)]. At the edges of such a frequency span, the pump
mode bifurcates and new phase-locked eigenmodulation
branches appear with modulation depth = #, # 0 variable
with frequency and phase locked to either ¢p = 0, 7 (stable,
centers) or ¢) = £x/2 (unstable, saddles). New heteroclinic
connections emanate from the latter, dividing the accessible
phase plane into three different domains [see Fig. 2(c)].

The structure illustrated in Fig. 2 has deep implications
for the long-term evolution of the PR in the full NLSE (1).
In order to show this, we numerically integrate Eq. (1) with
an initial value representing a weakly modulated back-
ground: (1) =+/1—n9+/2n9exp(ify) cos(wt), ny < 1,
where 6, is linked to the overall initial phase ¢y = ¢(0)
as gy =0y + ¢,/2.

Considering first frequencies within a PR band, we show
in Fig. 3 the excitation of the infinite-dimensional analog of
the heteroclinic separatrix shown in the left inset in Fig. 2,
obtained from a very weak modulation (17, = 0.001) with a
suitable phase. This entails a single cycle of amplification
connecting the background to itself with opposite phases,
i.e., the analog of the well-known Akhmediev breather of
the integrable focusing NLSE [26] (see also [30-35]). This
type of solutions of the periodic NLSE (1), which we term
as parametric resonance breathers (PR breathers), are
characterized by a main breathing occurring on top of
the short A-scale breathing. PR breathers can be excited for
all frequencies inside the PR bandwidth. We remark that,
although they entail the generation of harmonics of the
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FIG. 3. PR breather excitation from numerical integration of

NLSE (1): (a) Color level plot of |y|?; (b) fractions |Ay|*> and
|A,|? of Fourier modes versus z. Inset: Log scale spectrum at the
point of maximum depletion, z = 18. Here f,, = 0.5, @ = 2.15,
A =1, P =1, and initial condition 7, = 0.001, ¢y = 0.24162x
corresponds to the separatrix in Fig. 2(b).
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input modulation, the spectrum decays rapidly as shown in
the inset in Fig. 3(b) and the dynamics is dictated by the
first sideband pair with the harmonics that remain locked
to them.

A PR breather divides the phase plane into two types of
dynamical behaviors which exhibit different FPU-like
recurrence, i.e., cyclic amplification and deamplification
of the modulation over scales much longer than the A scale
of small oscillations. One of such recurrent regimes is
displayed in Figs. 4(a) and 4(b), obtained for , = 0.02 and
¢o = 0. When we flip the initial phase to ¢y = 7/2, we
observe a very similar behavior (not shown). However, the
projection of the NLSE evolutions onto the phase space
(n, @) reveals very different behaviors for the two initial
phases. While in both cases we observe quasiperiodic
evolutions, in one case (¢y = 0) the recurrence occurs
around the libration type of orbit of the averaged system
[Fig. 4(c)], whereas the recurrent dynamics for ¢y = 7/2
follows the rotation type of dynamics with the phase
spanning continuously the full range (—z,z) [Fig. 4(d)].
This is the clear signature of the hidden heteroclinic
structure of the PR in the periodic NLSE. At variance
with the well-known structure of the integrable focusing
NLSE [26,30-32], it cannot be revealed directly from the
space-time evolutions [Fig. 4(a)], due to the fast scale
oscillations associated with the driving.

The geometric structure of the nonlinear PR has even
more striking consequence in terms of optimal parametric
amplification of small sideband pairs. Clearly, the Floquet
analysis entails that the sideband growth rate is maximum
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FIG. 4. Quasiperiodic recurrent evolution from full NLSE
numerical integration with 7y = 0.02: (a) Color map of |y|*;
(b) evolution of extracted pump and sideband power fractions for
¢o =0 (solid lines), compared with those from the average
model (dashed lines), Eq. (10). (c),(d) Projections of the NLSE
numerical evolutions over the phase plane of the averaged system
for ¢pg = 0(c) and ¢y = n/2 (d). Here 5,, = 0.5, 0 =22, A = 1,
and P = 1.

at frequencies where the gain gp peaks. However, the
nonlinear analysis shows that stronger conversion occurs
towards higher frequencies of the gain curve, despite a
slower initial growth. Indeed, the long-range conversion is
associated with quasiperiodic evolutions in the neighbor-
hood of the averaged separatrix, and the latter extends to a
larger portion of the phase space and hence larger values of
n as the frequency increases [46]. The remarkable and
unexpected fact, however, is that strong nonlinear con-
version occurs also at frequencies higher than the high-
frequency edge of the PR bandwidth. While at such a
frequency the background is stable, strong nonlinear
conversion is permitted nearby the heteroclinic orbit that
emanates from the unstable eigenmodulations. As a result,
the converted sideband fraction as a function of w exhibits a
maximum slightly below a critical frequency w, which lies
off resonance, i.e., outside the Floquet gain bandwidth of
PR, as shown in Fig. 5(a). Across . the conversion
abruptly drops, as entailed by qualitatively different con-
version regimes [Figs. 5(b) and 5(c)] and remain low for
® > w,. The critical frequency corresponds to the evolu-
tion along the heteroclinic orbit in Fig. 2(c) and can be
calculated as the implicit solution of the equation
H,(ny(®),¢ = +n/2) = H,(n9. o). . tends to the
high-frequency edge of the Floquet bandwidth in the limit
of vanishing input signal 5, — 0 and substantially deviates
from it when increasing 7, even moderately, e.g., up to
10%, as shown in Fig. 5(d).

In summary, we have unveiled the underlying phase-
space structure of PR in the defocusing NLSE. This
allowed us to reveal the existence of a PR breather solution
dividing different recurrent regimes. Moreover, this study
establishes the intrinsic inadequacy of the linearized
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FIG. 5. (a) Output sideband fraction 7(z = 20) versus @ from
NLSE numerical integration for 7, = 0.03 and ¢, = 0 (solid
black curve; the dash-dotted brown curve gives the maximum
achievable conversion along z), with superimposed small-signal
PR gain gp(®) (solid cyan curve). (b),(c) Pump and sideband
mode evolutions extracted from NLSE numerical integration
across @, [vertical dashed line in (a), obtained from Egs. (10)].
Inset (d): @, versus input modulation fraction 7 [the horizontal
dashed line stands for the edge frequency of gp(®)].
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Floquet analysis to determine the frequency for optimal
parametric amplification.
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