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We present the calculation of the cross section and invariant mass distribution for Higgs boson pair
production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into
account throughout the calculation. The virtual two-loop amplitude has been generated using an extension
of the program GOSAM supplemented with an interface to REDUZE for the integral reduction. The occurring
integrals have been calculated numerically using the program SECDEC. Our results, including the full top-
quark mass dependence for the first time, allow us to assess the validity of various approximations proposed
in the literature, which we also recalculate. We find substantial deviations between the NLO result and the
different approximations, which emphasizes the importance of including the full top-quark mass
dependence at NLO.
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Introduction.—The couplings of the Higgs boson to
electroweak bosons and heavy fermions are being estab-
lished as standard-model-like at an impressive rate. In
contrast, the measurement of the Higgs boson self-
coupling, which is vital in order to confirm the mechanism
of electroweak symmetry breaking, is still outstanding, and
will have to wait until the LHC high-luminosity upgrade.
However, the Higgs boson self-coupling(s) could be
enhanced by physics beyond the standard model, and it
is an important task to be able to distinguish beyond the
standard model effects from effects due to higher order
corrections in perturbation theory.
Gluon fusion is the dominant production channel for

Higgs boson pair production. However, as this process
proceeds via a heavy quark loop already at the leading
order (LO), the next-to-leading order (NLO) corrections
involve two-loop four-point diagrams with two masses mh
and mt and the analytic calculation of two-loop four-point
integrals with different internal and external mass scales
has not been achieved so far.
The leading order (one-loop) calculation of Higgs boson

pair production in gluon fusion has been performed in
Refs. [1,2]. NLO corrections in the mt → ∞ limit for both
the standard model and the minimal supersymmetric
standard model have been performed in Ref. [3]. Finite
top-quark mass corrections to the NLO result have been
calculated in Refs. [4–9]. The next-to-next-to-leading order
(NNLO) QCD corrections in the mt → ∞ effective field
theory also have been computed [6,10,11], and they have

been supplemented by an expansion in 1=m2
t in Ref. [8]. In

the effective field theory, resummation at next-to-next-to-
leading logarithmic (NNLL) accuracy combined with NLO
has been considered in Ref. [12], and recently, even
matched NNLOþ NNLL resummed results became avail-
able [13]. The dominant uncertainty therefore is given by
the unknown top-quark mass effects at NLO.
The top-quark mass effects have been included in various

approximations in the literature.
(i) The “Born-improved Higgs effective field theory

(HEFT)” approximation, which is the one employed in
the program HPAIR [2,3]. It uses the heavy top-quark limit
throughout the NLO calculation, in combination with a
reweighting factor B=BHEFT, where B denotes the leading
order result in the full theory. In HPAIR the reweighting is
done at matrix element level, but after the angular integra-
tion of the phase space, while in Ref. [7] it is done on an
event-by-event basis.
(ii) The “FTapprox” result of Refs. [5,7] contains the full

top-quark mass dependence in the real radiation, while the
virtual part is rescaled by the reweighting factor mentioned
above. It was found that approximation (ii) leads to a total
cross section that is about 10% smaller than the one
obtained using Born-improved HEFT.
(iii) The “FT0

approx” result [7] is as in approximation
(ii) for the real radiation part, while it uses partial NLO
results for the virtual part, specifically, the exact results for
the two-loop triangle diagrams as far as they are known
from single Higgs boson production [14–17].
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(iv) HEFT results at NLO and NNLO have been
improved by an expansion in 1=m2ρ

t in Refs. [4,6,8,9],
where Ref. [8] contains corrections up to ρmax ¼ 6 at NLO,
and ρmax ¼ 2 for the soft-virtual part at NNLO. In Ref. [8] it
is also demonstrated that the sign of the finite top-quark
mass corrections depends on whether the reweighting
factor is applied at differential level, i.e., before the
integration over the partonic center of mass energy, or at
total cross section level.
All these results suggest that the uncertainty on the cross

section due to top-quark mass effects is �10% at NLO.
In this Letter we present results for the total cross section

and the Higgs boson pair invariant mass distribution for the
process gg → hh at NLO, including the full top-quark mass
dependence. The analytically unknown two-loop integrals
have been calculated numerically with the program
SECDEC [18–20]. Our results settle the long-standing
question about the uncertainty related to the various
approximations that have been calculated so far.
NLO calculation.—Amplitude structure At any loop

order, the amplitude for the process gðp1Þ þ gðp2Þ →
hðp3Þ þ hðp4Þ can be decomposed into form factors as

Mab ¼ δabϵ
μ
1ϵ

ν
2Mμν;

Mμν ¼ F1ðŝ; t̂; m2
h; m

2
t ; DÞTμν

1 þ F2ðŝ; t̂; m2
h; m

2
t ; DÞTμν

2 ;

ð1Þ
where ϵμ1, ϵ

ν
2 are the gluon polarization vectors, a, b are

color indices, and

ŝ¼ðp1þp2Þ2; t̂¼ðp1−p3Þ2; û¼ðp2−p3Þ2: ð2Þ

The decomposition into tensors carrying the Lorentz
structure is not unique. With the following definitions

Tμν
1 ¼ gμν −

pν
1p

μ
2

p1 · p2

;

Tμν
2 ¼ gμν þ 1

p2
Tðp1 · p2Þ

~Tμν
2 ;

~Tμν
2 ¼ fm2

hp
ν
1p

μ
2 − 2ðp1 · p3Þpν

3p
μ
2 − 2ðp2 · p3Þpμ

3p
ν
1

þ 2ðp1 · p2Þpν
3p

μ
3g;

where p2
T ¼ ðt̂ û−m4

hÞ=ŝ;
T1 · T2 ¼ D − 4; T1 · T1 ¼ T2 · T2 ¼ D − 2; ð3Þ
we have [1]

Mþþ ¼ M−− ¼ −F1; Mþ− ¼ M−þ ¼ −F2: ð4Þ
At leading order, we can further split F1 into a triangle
diagram and a box diagram contribution, F1 ¼ F△ þ F□.
As the form factor F△ only contains the triangle diagrams,
which have no angular momentum dependence, it can be
attributed entirely to an s-wave contribution. The form
factor F2 contains only box contributions. At NLO in QCD,
the feature persists that only F1 contains diagrams

involving the triple Higgs coupling. The form factors F1

and F2 can be attributed to the spin-0 and spin-2 states of
the scattering amplitude, respectively.
We construct projectors Pμν

j such that

Pμν
1 Mμν ¼ F1ðŝ; t̂; m2

h; m
2
t ; DÞ;

Pμν
2 Mμν ¼ F2ðŝ; t̂; m2

h; m
2
t ; DÞ:

For the projectors in D dimensions we can use as a basis
the tensors Tμν

i defined in Eqs. (3). The projectors can be
written as

Pμν
1 ¼ 1

4

D − 2

D − 3
Tμν
1 −

1

4

D − 4

D − 3
Tμν
2 ; ð5Þ

Pμν
2 ¼ −

1

4

D − 4

D − 3
Tμν
1 þ 1

4

D − 2

D − 3
Tμν
2 : ð6Þ

LO cross section The partonic leading order cross
section can be written as

σ̂LO ¼ 1

29πŝ2

Z
t̂þ

t̂−

dt̂fjF1j2 þ jF2j2g; ð7Þ

where

t̂� ¼ m2
h −

ŝ
2
ð1∓βhÞ; β2h ¼ 1 − 4

m2
h

ŝ
: ð8Þ

The leading order form factors Fi with full mass depend-
ence can be found, e.g., in Refs. [1,2].
For the total cross section, we also have to integrate over

the parton distribution functions, so we have

σLO ¼
Z

1

τ0

dτ
dLgg

dτ
σ̂LOðŝ ¼ τsÞ: ð9Þ

The luminosity function is defined as

dLij

dτ
¼

X
ij

Z
1

τ

dx
x
fiðx; μFÞfj

�
τ

x
; μF

�
; ð10Þ

where s is the square of the hadronic center of mass energy,
τ0 ¼ 4m2

h=s, μF is the factorization scale, and fi are the
parton distribution functions (PDFs) for parton type i.
NLO cross section The NLO cross section is composed

of various parts, which we will discuss separately in the
following,

σNLOðpp → hhÞ ¼ σLO þ σvirt þ
X

i;j∈fg;q;q̄g
σrealij ð11Þ

The virtual two-loop amplitude For the virtual two-
loop amplitude, we use the projectors defined in Eqs. (5)
and (6) to express the amplitude in terms of the scalar form
factors F1 and F2.
The virtual amplitude has been generated with an

extension of the program GOSAM [21,22], where the
diagrams are generated using QGRAF [23] and then further
processed using FORM [24,25]. This leads to about 10 000
integrals before any symmetries are taken into account. The
two-loop extension of GOSAM contains an interface to
REDUZE [26], which we used for the reduction to master
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integrals. We have defined eight integral families with nine
propagators each. For the six and seven propagator non-
planar topologies we could not achieve a complete reduc-
tion with our available computing resources using the
reduction programs REDUZE [26], FIRE [27], or LITERED

[28]. In this case we evaluated the tensor integrals directly,
exploiting the fact that SECDEC can calculate integrals with
(contracted) loop momenta in the numerator.
After the partial reduction, we end up with 145 planar

master integrals plus 70 nonplanar integrals and a further
112 integrals that differ by a crossing. As the master
integrals contain up to four independent mass scales ŝ, t̂,
m2

t , and m2
h only a small subset is known analytically.

Therefore, we have calculated all the integrals numerically
using the program SECDEC-3.0 [20]. We partially used a
finite basis [29] for the planar master integrals, as far as it
turned out to be beneficial for the numerical integration.
The interface to SECDEChas been constructed such that the

coefficients of the master integrals as they occur in the
amplitude are taken into accountwhen evaluating the integrals
numerically. For each integral, once a relative accuracy of 0.2
is reached, the number of sampling points is then set
dynamically according to two criteria: (i) the contribution
of the integral including its coefficient to the error estimate of
the amplitude, and (ii) the timeper samplingpoint spent on the
integral. The numerical integration is continued until the
desired precision for the full amplitude is reached. This
procedure allows for a precise evaluation of the amplitude,
without spending an unnecessary amount of time on indi-
vidual integrals which are suppressed in the full amplitude.
For the numerical integrationwe use a quasi–MonteCarlo

method based on a rank-one lattice rule [30–32]. For suitable
integrands, this rule provides a convergence rate ofOð1=nÞ
as opposed to Monte Carlo or adaptive Monte Carlo
techniques, such as VEGAS [33], which converge
Oð1= ffiffiffi

n
p Þ, where n is the number of sampling points.

The integration rule is implemented in OPENCL 1.1 and a
further (OPENMP threaded) C++ implementation is used
as a partial cross-check. The 665 phase-space points used
for the current Letter were computed with ∼16 dual NVIDIA

TESLA K20X general purpose Graphics Processing Unit
(GPU) nodes using a total of 4680 GPU hours.
We use conventional dimensional regularization with

D¼4−2ϵ. The top-quark mass is renormalized in the on-
shell scheme and the QCD coupling in the MS scheme with
Nf ¼ 5. The top-quark mass counterterm is obtained by
insertion of the mass counterterm into the heavy quark
propagators. Alternatively, the mass counterterm can be
calculated by taking the derivative of the one-loop ampli-
tude with respect to mt. We have used both methods as a
cross-check.
Real radiation The contributions from the real radia-

tion, σrealij , can be divided into four channels, according
to the partonic subprocesses gg→hhþg, gq→hhþq,
gq̄→hhþ q̄, qq̄ → hhþ g. The qq̄ channel is infrared
finite.

We have generated the one-loop amplitudes for all
subprocesses with the program GOSAM [21,22]. For the
subtraction of the infrared poles, we use the Catani-
Seymour dipole formalism [34]. Further, we use a
phase-space restriction parameter α to limit the subtractions
to a smaller region in phase space, as suggested in
Ref. [35]. We have retained the full top-quark mass
dependence throughout the calculation of the 2 → 3 matrix
elements and IR subtraction terms. For the phase-space
integration we use the VEGAS algorithm [33] as imple-
mented in the CUBA library [36].
The infrared poles of the virtual contribution dσ̂virt

cancel in the combination ðdσ̂virt þ dσ̂LO ⊗ IÞ, where
the I operator is given by

I ¼ αs
2π

ð4πÞϵ
Γð1 − ϵÞ

�
μ2

ŝ

�
ϵ
�
2CA

ϵ2
þ β0

ϵ
þ finite

�
: ð12Þ

Checks We have checked that for all calculated phase-
space points the numerical cancellations of the poles in ϵ
are within the numerical uncertainties. For a randomly
chosen sample of phase-space points we calculated the
poles with higher accuracy and obtained a median can-
cellation of five digits.
Our implementation of the virtual two-loop amplitude is

checked to be invariant under the interchange of t̂ and û by
recomputing ten randomly selected phase-space points.
The part of the amplitude known from single Higgs boson
production is checked against the program of Ref. [17].
Further, the one-loop amplitude is computed using an
identical framework to the two-loop amplitude and is
checked against the result of Ref. [1].
We have verified the independence of the amplitude from

the phase-space restriction parameter α. Further, we have
compared to the results of Ref. [7] for the approximations
(i) and (ii) mentioned above, and found agreement within
the numerical uncertainties [37].
As a further cross-check we have also calculated mass

corrections as an expansion in 1=m2
t in the following way:

we write the partonic differential cross section as

dσ̂exp;N ¼
XN
ρ¼0

dσ̂ðρÞ
�
Λ
mt

�
2ρ

; ð13Þ

where Λ ∈ f ffiffiffî
s

p
;

ffiffî
t

p
;

ffiffiffî
u

p
; mhg, and determine the first few

terms (up to N ¼ 3) of this asymptotic series with the help
of QGRAF [23], Q2E/EXP [38,39] and MATAD [40], as well as
REDUZE [26] and FORM [24,25].
We applied the series expansion to the virtual correc-

tions, combined with the infrared insertion operator I, such
that the expression in brackets below is infrared finite

dσ̂virt þ dσ̂LOðϵÞ ⊗ I

≈ ½dσ̂virtexp;N þ dσ̂LOexp;NðϵÞ ⊗ I� dσ̂LOðϵÞ
dσ̂LOexp;NðϵÞ

; ð14Þ
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such that we can set ϵ ¼ 0 in dσ̂LO=dσ̂LOexp;N . There is some
freedom when to do the rescaling, i.e., before or after the
phase-space integration and convolution with the PDFs. We
opt to do it on a fully differential level; i.e., the rescaling is
done for each phase-space point individually. The com-
parison of this expansion with the full result is shown in the
next section.
Numerical results.—In our numerical computation

we set μR ¼ μF ¼ μ ¼ mhh=2, where mhh is the invariant
mass of the Higgs boson pair. We use the
PDF4LHC15_nlo_100_pdfas [41–44] parton distribution
functions, along with the corresponding value for αs for
both the LO and the NLO results. The masses have been
set to mh ¼ 125 GeV, mt ¼ 173 GeV, and the top-quark
width has been set to zero. We use a center-of-mass energy
of

ffiffiffi
s

p ¼ 13 TeV and no cuts except a technical cut in the
real radiation of pmin

T ¼ 10−4
ffiffiffî
s

p
, which we varied in the

range 10−2 ≤ pmin
T =

ffiffiffî
s

p
≤ 10−6 to verify that the contribu-

tion to the total cross section is stable and independent of
the cut within the numerical accuracy.
Including the top-mass dependence, we obtain the total

cross section at
ffiffiffi
s

p ¼ 13 TeV

σNLO ¼ 27.72þ13.7%
−12.7% fb� 0.4%ðstatÞ � 0.1%ðintÞ:

In addition to the dependence of the result on the variation of
the scales by a factor of 2 around the central scale, we state
the statistical error coming from the limited number of
phase-space points evaluated and the error stemming from
the numerical integration of the amplitude. The latter value
has been obtained using error propagation and assuming
Gaussian distributed errors and no correlation between the

amplitude-level results. Thevalue of the cross section is 14%
smaller than the Born-improved HEFT result σNLOHEFT ¼
32.22þ18%

−15% fb, and about 40% larger than the leading order
result σLO ¼ 16.72þ28%

−21% . Let us note that using a leading
order PDF set rather than a NLO one for the LO calculation
increases the LO result by about 10%.
The results for the mhh distribution are shown in Fig. 1.

We can see that for mhh beyond ∼450 GeV, the top-quark
mass effects lead to a reduction of the mhh distribution by
about 20%–30% as compared to the Born-improved HEFT
approximation. We also observe that the central value of the
Born-improved HEFT result lies outside the NLO scale
uncertainty band of the full result formhh ≳ 450 GeV,while
the FTapprox result, where the real radiation contains the full
mass dependence, lies outside the scale uncertainty band for
mhh beyond ∼550 GeV. The scale uncertainty of the Born-
improved HEFT and FTapprox does not enclose the central
value of the full result in the tail of the mhh distribution.
In Fig. 2, we show the results for the renormalized virtual

amplitude including the I operator as defined in Ref. [34]
and compare it to various orders in an expansion in 1=m2

t , see
Eqs. (13) and (14). In the upper panel we normalize to the
virtual HEFT result, while in the lower panel we normalize
to the Born-improved HEFT result, i.e., V 0

N ¼ VNB=BN .
The upper panel shows that the agreement of the full result
with the HEFT result is only good well below the threshold
at 2mt. The lower one demonstrates that the deviations
between the full result and the Born-improved HEFT result
are more than 30% for mhh ≳ 480 GeV.
Conclusions.—We have calculated the total cross section

and the mhh distribution for Higgs boson pair production
in gluon fusion at NLO, including the full top-quark
mass dependence. We have also presented results for the

FIG. 1. Comparison of the full calculation to various approx-
imations for the Higgs pair invariant mass distribution atffiffiffi
s

p ¼ 13 TeV. NLO HEFT denotes the effective field theory
result, i.e., approximation (i) above, while FTapprox stands for
approximation (ii), where the top-quark mass is taken into account
in the real radiation part only. The band results from scale
variations by a factor of 2 around the central scale μ ¼ mhh=2.

FIG. 2. Comparison of the virtual amplitude with full top-quark
mass dependence to various orders in a 1=m2

t expansion. V 0
N

denotes the Born-improved HEFT result to order N in the 1=m2
t

expansion, i.e., V 0
N ¼ VNB=BN .
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Born-improved HEFT approximation, for the approxima-
tion where the virtual part is calculated in the Born-
improved HEFT approximation while the real radiation
part contains the full top-quark mass dependence (FTapprox),
and for an expansion in 1=m2

t . We observe that the total
cross section including the full top-quark mass dependence
is about 14% smaller than the one obtained within the
Born-improved HEFT approximation. The mhh distribution
shows that for mhh values beyond ∼500 GeV the top quark
mass effects lead to a reduction of the differential cross
section by about 20%–30% as compared to the Born-
improved HEFTapproximation, and by about 10%–20% as
compared to the FTapprox result. Our results demonstrate
that the calculation of the full top-quark mass dependence
is vital in order to get reliable predictions for Higgs boson
pair production over the full invariant mass range.
The method outlined here can in principle also be applied

to the calculation of other multiscale amplitudes beyond
one loop.
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