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We report the first observation of the decay A} — pK*z~ using a 980 fb~! data sample collected by the
Belle detector at the KEKB asymmetric-energy e™e™ collider. This is the first observation of a doubly
Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay
with respect to its Cabibbo-favored counterpart to be B(Af — pKtz™)/B(Af —» pK~zt) =
(2.35+£0.27 £ 0.21) x 1073, where the uncertainties are statistical and systematic, respectively.
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Several doubly Cabibbo-suppressed (DCS) decays of
charmed mesons have been observed [1-4]. Their mea-
sured branching ratios with respect to the corresponding
Cabibbo-favored (CF) decays play an important role in
constraining models of the decay of charmed hadrons and
in the study of flavor-SU(3) symmetry [1,3-6]. On the
other hand, because of the smaller production cross
sections for charmed baryons, DCS decays of charmed
baryons have not yet been observed; only an upper
limit, B(Af - pK*n™)/B(Af — pK~n") < 0.46% with
90% confidence level, has been reported by the FOCUS
Collaboration [7]. Theoretical calculations of DCS decays
of charmed baryons have been very few and limited to two-
body decay modes [8.,9].

In this Letter, we report the first observation of the DCS
decay A7 — pK 'z~ and the measurement of its branching
ratio with respect to its counterpart CF decay Al —
pK~=t [10]. Typical decay diagrams of DCS and CF
decays are shown in Fig. 1. In brief, the diagrams are
categorized as external W-emission, internal W-emission,
and W-exchange processes. Since W exchange is allowed
in A7 - pK~zn", as shown in Fig. 1(e), but absent in
Al - pKtz=, the ratio B(Af - pKtz™)/B(Af —
pK~z") may be smaller than the naive expectation [7]
of tan*@, (0.285%), where 6. is the Cabibbo mixing
angle [11] and sin@, = 0.225 £ 0.001 [12]. We can also
compare the ratio B(Af — pK'z™)/B(Af - pK~zt)
with similar ratios in charmed meson decays, such
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FIG. 1. Typical external (internal) W-emission diagrams for
@ [©] AF — pK*z~ and (b) [()] Af — pK=z*, and (e) a
typical W-exchange diagram of A} — pK~zn™.

)/B(DT =K~z z7)|[B(Dy —
K*K*n™)/B(Df - K"K~ n")]=(1.25+£0.08)tan*g, [1]
or B(D°—K*n™)/B(D°— K~ z")=(1.24-+0.05)tan*d.
[2]. By doing so, similarities and differences between
charmed meson and baryon decays can provide additional
insight into flavor-SU(3) symmetry and QCD. For exam-
ple, flavor-SU(3) symmetry breaking in A} decay may
affect the ratio as is the case in D meson decay.

We analyze data taken at or near the Y(1S), Y(2S),
T(3S), Y(4S), and YT(5S) resonances collected by the
Belle detector at the KEKB asymmetric-energy e’e™
collider [13]. The integrated luminosity of the data sample
is 980 fb~!. The Belle detector is a large-solid-angle
magnetic spectrometer comprising a silicon vertex detector
(SVD) [14], a central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-like
arrangement of time-of-flight scintillation counters (TOF),
and an electromagnetic calorimeter composed of CsI(TI)
crystals (ECL) located inside a superconducting solenoid
coil that provides a 1.5 T magnetic field. The detector is
described in detail elsewhere [15]. The combined particle
identification (PID) likelihoods, L(%) (h = p, K, or x), are
derived from ACC and TOF measurements and dE/dx
measurements in CDC. The discriminant R (h|h’), defined
as L(h)/[L(h) + L(K")], is the ratio of likelihoods for &
and /' identification. The electron likelihood ratio, R(e),
for e and 4 identification is derived from ACC, CDC, and
ECL measurements [16]. We use samples of eTe™ — c¢c
Monte Carlo (MC) events, which are generated with
PYTHIA [17] and EvtGen [18] and propagated by GEANT3
[19] to simulate the detector performance, to estimate
reconstruction efficiencies and to study backgrounds.

In this analysis, our selection criteria follow mostly those
typically used in other charmed hadron studies at Belle (for
example, Refs. [1,20,21]). However, our final criteria,
described in the next paragraph, are determined by a
figure-of-merit (FOM) study performed using a control
sample of the CF decay (Af — pK~z") in real data,
together with sidebands to the DCS signal region. We use
this blinded study to optimize the FOM, defined as
Ngio/ \/Nsig + Nikg>» Where ng, is the fitted yield of the
control sample multiplied by the presumed ratio of the
DCS and CF decays (0.0025), and ny, is the number of
background events from the sideband region in the
DCS decay.

A A} candidate is reconstructed from the three charged
hadrons, and all charged tracks are required to have a
distance of closest approach to the interaction point
(DOCA) less than 2.0 cm and 0.1 cm in the beam direction
(z) and in the transverse (r — ¢) direction, respectively. The
number of SVD hits is also required to be at least one, both
in the z and r — ¢ directions, for each of three charged
particles. The charged particles are identified by the PID
measurements: R(p|h) > 0.9 for both h =7z and K is
required for charged protons, R(K|p)> 0.4 and

as VIB(DT =K ntn~
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R(K|x) > 0.9 are required for charged kaons, R(z|p) >
0.4 and R(x|K) > 0.4 are required for charged pions, and
R(e) < 0.9 is required for all charged particles. The
identification efficiencies of p, K, and = are 75%, 75%,
and 95%, respectively, for the typical momentum range of
the decays. Probabilities of misidentifying h as #,
P(h — I'), are estimated by using data and MC samples
of the CF decay to be 8% [P(p — K)], 5% [P(p — =)],
11% [P(K — 7)], 2% [P(K — p)], 2% [P(z — K)], and
less than 1% [P(z — p)] for the typical momentum range.
To suppress combinatorial backgrounds, especially
from B meson decays, we place a requirement on the
scaled momentum: X, > 0.53, where X, 1s defined
as p*/\/E%,/4 — M?; here, E_,, is the total center-of-mass
energy, p* is the momentum in the center-of-mass frame,
and M is the mass of the A} candidate. In addition, the y?
value from the common vertex fit of the charged tracks
must be less than 40.

Figures 2 and 3 show invariant mass distributions,
M(pK=z") (CF) and M(pK*zn~) (DCS), with the final
selection criteria. DCS decay events are clearly observed in
M(pK*z~). We perform a binned least-y? fit to the two
distributions from 2.15 GeV/c? to 2.42 GeV/c? with
0.01 MeV/c? bin width, and the figures are drawn with
merged bins. The probability density functions (PDFs) for
the fits are the sum of two Gaussian distributions, with a
common central value, to represent the signals, and poly-
nomials of fifth and third order for the combinatorial
backgrounds in the M(pK~z") and M(pK*z~) distribu-
tions, respectively. In the fit to M(pK " z~), the resolution
and central value of the signal function are fixed to be the
same as those found from the fit to M(pK z"). The
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FIG. 2. Distribution of M(pK~z"). The curves indicate the fit
result: the full fit model (solid) and the combinatoric background
only (dashed).

equality of these quantities is expected from first principles
and is confirmed using the MC simulation. The reduced y?
values (y* divided by degrees of freedom) of the fits are
1.03 (27749/26 989) and 1.01 (27 131/26 995) for the CF
and DCS decays, respectively. From the fit results, the
signal yields of Aj - pK~z" and A} — pK*z~ decays
are determined to be (1.45240.015) x 10% events and
3587 + 380 events, respectively, where the uncertainties
are statistical. There is a small excess above background on
the right side of the A} peak (around 2.297 GeV/c?) in the
DCS spectrum of Fig. 3. We attribute this to a statistical
fluctuation as no known process would make such a narrow
feature at this position even when possible particle mis-
identification, such as the misidentification of both the K
and the 7, is taken into account.

The DCS decay has a peaking background from the SCS
decay A7 — AK' with A — pz~, which has the same
final-state topology. However, because of the long A
lifetime, many of the A vertexes are displaced by several
centimeters from the main vertex, so the DOCA and y?
requirements suppress most of this background. The
remaining SCS-decay yield is included in the signal yield
of AT - pK*™z~ decay and is estimated via the relation

N(SCS; A - pr™)
_ €(SCS; A — pn~) B(SCS; A — pr™)
B ¢(CF) B(CF)
where N(CF) is the signal yield of the CF decay,
B(SCS; A — pn~)/B(CF) = (0.61 £0.13)% is the

branching ratio [12], and €(SCS;A — pzn~)/e(CF) =
0.023 is the relative efficiency found using MC samples.

N(CF), (1)

250007’ s N, NP
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FIG. 3. Distribution of M(pK"z~) (top) and residuals of data

with respect to the fitted combinatorial background (bottom).
Curves are drawn as described in Fig. 2.
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This calculation gives a yield of 208 4 78 events from this
source, where the uncertainty is estimated by comparing
the signal yields from this calculation and a fit to
M(pK*z~) with loosened selection criteria for the vertex
point and A selection in M(pz~). After subtraction of this
SCS component, the signal yield of the DCS decay is
3379 + 380 £ 78, where the first uncertainty is statistical
and the second is systematic due to this subtraction.

To estimate the statistical significance of the DCS signal,
we exclude the SCS signal by vetoing events with
1.1127 GeV/c?> < M(pr~) < 1.1187 GeV/c?. The sig-
nificance is estimated as \/—21n (Ly/L), where L, and
L are the maximum likelihood values from binned maxi-
mum likelihood fits with the signal yield fixed to zero and
allowed to float, respectively. The calculated significance
corresponds to 9.4c.

We calculate the reconstruction efficiency using a
mixture of subchannels weighted with their corresponding
branching fractions. For the CF decay, the subchannels and
their branching fractions are taken from Ref. [12]; the
estimated efficiency of the CF decay is (13.83 + 0.05)%,
where the uncertainty is from MC statistics. To estimate the
uncertainty arising from the mix of intermediate states in
the CF decay, the reconstruction efficiency is calculated
using the efficiency of each bin of the M?(K~z") versus
M?(pK~) Dalitz distribution [22], shown in Fig. 4, and
weighting them by the number of events in the bin of the
real data. The relative difference between the reconstruction
efficiencies, before and after this weighting, is 3.0%. For
the DCS decay, we use the pK*(892)°, A(1232)°K™*, and
nonresonant subchannels with branching fractions of 0.23,
0.18, and 0.59, respectively. These values represent the
branching fractions for the corresponding subchannels of
the CF decay, adjusted for the fact that A(1520) cannot be
produced in the DCS decay. With the assumed subchannels
and their branching fractions, the reconstruction efficiency
of the DCS decay is estimated to be (13.71 +0.05)%,
where the uncertainty is from MC statistics. Because of the
low signal-to-background ratio in the DCS signal peak, the
uncertainty from the assumed mixture of intermediate
states cannot be estimated using the method used for the
CF decay. Therefore, the largest difference between the
efficiency of a subchannel and the overall reconstruction
efficiency is taken as the efficiency uncertainty; the largest
relative difference is 4.5% from A(1232)°K* subchannel.
The relative efficiency of the CF and DCS decays is
1.01 % 0.05, where the uncertainty is due to the uncertainty
in the composition of the intermediate states as described
above.

The branching ratio, B(Al - pK'z7)/B(Af —
pK=n"),is (2.354+0.27 4 0.21) x 1073, where the uncer-
tainties are statistical and systematic, respectively. Sources
of the systematic uncertainty and their values are listed in
Table I. The uncertainty from the binning and range of the
fits is estimated by changing the bin width to 3 MeV/c?

x10°
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FIG. 4. Invariant mass squared of K=zt versus pK~ within

2.2746 GeV/c? < M(pK~n") < 2.2986 GeV/c? in real data
(top) and estimated efficiency using the MC (bottom). The bin
widths of x and y axes are 0.016 GeV?/c* and 0.027 GeV?/c*,
respectively.

and adjusting the fitted range of the invariant mass
distributions. The uncertainty due to the PDF shapes is
estimated by changing the order of the polynomial back-
ground function, by changing the signal function to the sum
of three Gaussian distributions, and by fixing the resolution
of the signal function to the MC-derived resolution value.
The PID uncertainty is determined by data-MC comparison
of several control samples. We treat the relative efficiency
difference between charge-conjugate modes as a systematic
uncertainty.

The branching fraction of the CF decay, (6.84+
0.247921) x 1072, was well measured in a previous Belle
analysis [23]. Combining that with our measurement, we
determine the absolute branching fraction of the DCS decay
tobe (1.61 £ 0.237007) x 107, where the first uncertainty
is the total uncertainty of the branching ratio and the second

011801-5



PRL 117, 011801 (2016)

PHYSICAL REVIEW LETTERS

week ending
1 JULY 2016

TABLE I. Systematic uncertainties and sources.

Source Uncertainty (%)

Background from SCS signal +2.3
Intermediate states +5.4
Binning and fit range (DCS) +5.5
Binning and fit range (CF) +0.6
PDF shape (DCS) +2.6
PDF shape (CF) +1.4
MC statistics +0.4
PID +2.2
Charge-conjugate mode +1.8
Total +9.0

is uncertainty of the branching fraction of CF decay.
This measured branching ratio corresponds to (0.82+
0.12) tan* 6., where the uncertainty is the total.

The branching ratio suggests a slightly smaller decay
width than the naive expectation, although the significance
is only 1.5¢. This is consistent with the expectation that the
A isobar, in addition to A*(1520), does not contribute to the
DCS decay [9]. Omitting those two contributions, which
are (25+4)% [12], from the CF decay rate, the ratio
becomes (1.10 4 0.17) tan*d,, which is consistent with
tan* @, within 1o. This result suggests that W-exchange
effects are modest in the decay A — pK~zn™, except
possibly for the submode with an intermediate A. In
addition, we note that the observed DCS/CF ratio for
charmed baryons is not significantly different from the
measured ratio for charmed meson decay.

In conclusion, the first DCS decay of a charmed baryon,
Al — pK*z™,is observed with a statistical significance of
9.40. The branching ratio relative to its counterpart CF
decay is (2.35 £0.27 +£0.21) x 1073, which corresponds
to (0.82 4 0.12) tan* @,. This result sheds new light on
charmed hadron decays, with such DCS measurements
being important ingredients in modeling the nonleptonic
decays of hadrons. However, the current experimental
precision on the strengths of DCS modes and the level
of detail of the available theoretical results are not sufficient
to constrain the relative importance of the different sub-
processes shown in Fig. 1. Future progress in this field will
require more precise experimental measurements as well as
more refined theoretical calculations.
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