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For spacetimes that are not asymptotic to anti–de Sitter (non AAdS) space, we adapt the Lewkowycz-
Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our
knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on
extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications:
(1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic
conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all
fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method
amounts to evaluating the presymplectic structure at the special surface, where some additional exact form
may contribute. An explicit calculation is carried out for three-dimensional warped anti–de Sitter spacetime
(WAdS3) in a consistent truncation of string theory, the so-called S-dual dipole theory. It turns out that the
generalized gravitational entropy in WAdS3 is captured by the least action of a charged particle in WAdS3
space, or equivalently, by the geodesic length in an auxiliary AdS3. Consequently, the bulk calculation
agrees with the CFT results, providing another piece of evidence for the WAdS3=CFT2 correspondence.
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Introduction.—Entanglement plays a central role in many
fields of physics, including many body systems, quantum
information, and quantum field theories. In the context of
AdS=CFT [1–3], Ryu and Takayanagi [4,5] proposed (the
Ryu and Takayanagi formula) that the holographic dual of
the entanglement entropy is captured by the area of aminimal
co-dimension 2 surface in the bulk. A covariant version
[the Hubeny-Rangamani-Takayanagi (HRT) formula] was
proposed in Ref. [6]. Large amounts of evidence [7] have
accumulated and an explanation as the generalized gravita-
tional entropy was made by Lewkowycz andMaldacena [8].
On the other hand, the success of holography goes beyond
AdS=CFT, for instance, the recent development of the Kerr/
CFT correspondence [9,10], flat space holography [11,12],
Schrödinger or Lifshitz spacetime or nonrelativistic field
theory duality [13,14], etc. Some efforts [15–17] have been
made in understanding the holographic entanglement
entropy in these non AdS spacetimes. However, naively
using the minimal area prescription leads to some puzzles
(see the Supplemental Material [18]).
One of the simplest types of non-AAdS spacetimes is the

so-called warped AdS3 spacetime (WAdS3), which appears
in various contexts of physics, including three-dimensional
gravity [24], extremal Kerr black holes [9,25], and cold atom
systems [13]. It was noticed [26] that the Bekenstein-
Hawking entropy of WAdS3 black holes can be rewritten
in the form of the Cardy formula of a CFT2. Hence, it
was conjectured that WAdS3 is holographically dual to a
CFT2 [18]. Based on some earlier efforts [21,22,27,28], the
boundary conditions in support of this conjecturewere found
[29]. Hereafter, we refer to this set of boundary conditions as
the Dirichlet boundary conditions. Alternatively, under the

Dirichlet-Neumann boundary conditions [30,31], WAdS3
was conjectured to be dual to the so-called warped CFT2

(WCFT) featured by a Virasoro-Kac-Moody structure [32],
with the evidence that the black hole entropy can also be
interpreted as the Detournay-Hartman -Hofman (DHH) [33]
formula in the WCFT, an analog of the Cardy formula.
In this Letter, we take the approach of the generalized

gravitational entropy in the manner of Lewkowycz and
Maldacena [8], and give a prescription of holographic
entanglement entropy for non-AAdS spacetime. The key
observation is that asymptotic boundary conditions play an
essential role in order to extend the replica symmetry to the
bulk.Weexpect threemainmodifications to theLewkowycz-
Maldacena prescription. As a consequence, the dual of the
entanglement entropy is not necessarily given by theminimal
area (length) in the bulk spacetime we start with.
As an example, we explicitly work out the holographic

entanglement entropy for WAdS3 with Dirichlet boundary
conditions. Interestingly, the holographic entanglement
entropy is given by the least action of a charged particle
in WAdS3, or equivalently, by the geodesic length in some
auxiliary AdS3. Consequently, the bulk calculation agrees
with the CFT results, providing another piece of evidence
for the WAdS3=CFT2 correspondence under the Dirichlet
boundary conditions. It will be interesting to apply our
prescription to the Dirichlet-Neumann boundary conditions
and find out if the bulk calculation agrees with the field
theory calculation [34]. It will also be very interesting to
explore the range of validity of the Ryu and Takayanagi
proposal. Reference [8] proves it for Einstein gravity in the
context of AdS=CFT. Corrections are expected if the bulk
theory is not Einstein gravity [35,36]. While our analysis
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shows that there are also corrections due to the effect of
non-AAdS spacetimes.
Generalized gravitational entropy for non-AAdS

spacetimes.—We adapt the Lewkowycz-Maldacena pro-
cedure [8] to derive the bulk dual of entanglement entropy.
Our first assumption is the existence of holographic duality
for non-AAdS spacetime, and the compatibility of different
formalisms to establish the duality. For a given non-AAdS
background, consistent boundary conditions have to be
imposed in order to define the bulk gravitational theory,
and furthermore to find out the holographic dual. In the
prescription of Refs. [2,3], specifying the boundary con-
dition of a bulk field is to identify the boundary value of the
field as the source of the dual operator. However, ambiguity
in separating the source from the vev may appear [37]. As
was argued in Ref. [28], a proper way is to read the source
and vev from the symplectic form. Schematically, we
consider the asymptotic expansion of the metric [38]

ds2 ¼ ds20 þ warping; ð1Þ
ds20 ¼ σ−2ðdσ2 þ γð0Þij dx

idxjÞ þ hμνdxμdxν; ð2Þ
where σ parametrizes the radial direction with the asymp-

totic boundary at σ → 0. γð0Þij is the source of the dual stress
tensor, and therefore is identified with the metric of the dual
field theory. hμν includes all subleading terms in the small σ
expansion. The warping terms do not source the stress
tensor, but are not necessarily subleading. Note that
asymptotic AdS spacetimes do not contain warping terms.
Similarly, the boundary expansion for all other fields,
collectively denoted by ϕi, gives a prescription for reading
the sources ϕijsource that coupled to the dual operators.
Conversely, to find out the bulk dual of any operator at
the boundary, we have to find the bulk configuration by
specifying the boundary values of the source ϕijsource. In
many examples of holography for non-AAdS spacetimes
[9,11,29], asymptotic symmetry analysis gives some indi-
cation about the dual field theory. In the covariant phase
space formalism [39,40], there are ambiguities in deriving
the presymplectic structure and symplectic structure, which
will furthermore lead to some ambiguities in the definition
of conserved charges. We assume that the covariant
formalism and the holographic renormalization analysis
[41–44] are compatible with each other; namely, correctly
fixing these ambiguities in the covariant approach should
lead to a consistent identification of the source/vev, as well
as appropriate boundary terms in the holographic renorm-
alization approach. In the following, we will switch
languages between the two formalisms.
Consider a quantum field theory on a manifold N ; the

entanglement entropy can be calculated by the replica trick

SEEðAÞ ¼ −n∂n½logZn − n logZ1�jn¼1; ð3Þ
whereZn is the partition function onN n, which is the n-fold
cover of N 1, defined by first making n copies of N 1 ≡N ,

cutting each N 1 open at a region A, and then gluing them
together cyclically. By construction, there is a Zn symmetry
whose set of fixed points is the boundary of regionA denoted
by ∂A. For a field theory with Lorentzian invariance, let τ
denotes the angle around∂A. Then, onN n, all fields have the
property ϕB

i ðτÞ ¼ ϕB
i ðτ þ 2πÞ, but with period τ ∼ τ þ 2πn.

For conformal field theory, the most divergent piece of the
entanglement entropy is universal [45]. Note that here we
have assumed that a Euclidean theory exists, and that there
is a proper way of doing Wick rotations.
Let Mn denote the bulk extension of N n. Then, the

relation between data on N n and data on Mn should be

read from the asymptotic expansion (2). γð0Þij appearing in
the bulk metric is identified with the metric on N n, and
hence the rule of Wick rotation will be extended to the bulk
[18]. The metric of M1 near a co-dimension 2 surface
ending on ∂A can be expanded as

ds2 ¼ ds2e þ tilting; ð4Þ
ds2e ¼ dr2 þ r2dτ2 þ ð~gij þ 2KaijxaÞdyidyj

þ subleading; ð5Þ
where r parametrizes the separation from the curve. The
tilting terms are added to make τ the bulk extension of the
circle around ∂A. In other words, the first modification to
the Lewkowycz-Maldacena procedure is that the asymp-
totic expansion (1) at small σ and the near curve expansion
(4) at small r have to be compatible with each other.
Namely, after some coordinate transformations, the leading
terms in Eqs. (1) and (4) agree with each other at the double
limit σ → 0 and r → 0:

ds20jr→0 ¼ ds2ejσ→0; ð6Þ
warpingjr→0 ¼ tiltingjσ→0; ð7Þ

ϕijsourceðτÞ ¼ ϕB
i ðτÞ: ð8Þ

With Eqs. (1), (4), and (6) in mind, we can extend the
replica symmetry to the bulk following the reasoning of
Ref. [8]. Let Cn denotes the set of the fixed points of Zn.
The expansion near Cn is then

ds2 ¼ ds2e;n þ tilting; ð9Þ
ds2e;n ¼ n2dr2 þ r2dτ2 þ ð~gij þ 2KðnÞ

aijx
aÞdyidyj

þ subleading: ð10Þ
In order to select a special co-dimension 2 surface, we need
to impose some regularity conditions of the fields near Cn.
In Ref. [8], the requirement is that all fields and their
variations are periodic. However, this condition could be
overdetermining when there are mixings between various
fields, as in our example later. As we mentioned before, the
matching between the bulk and the boundary is through
the source/vev relation, or equivalently, through the
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symplectic structure. Note that in the covariant formalism,
the symplectic structure can be defined in the bulk [29].
Therefore, we propose the second modification to the
Lewkowycz-Maldacena procedure: to impose a periodicity
condition for all the independent coordinates on the phase
space, and their variations. In particular,

δϕiðτÞ ¼ δϕiðτ þ 2πÞ; ð11Þ
for variations appearing in the symplectic form
ω½ϕ; δ1ϕ; δ2ϕ�. Assuming analytic continuation, and plug-
ging Eqs. (9) and (11) into the equations of motion (EOMs)
will determine the shape of a special surface γA ≡ Cnjn→1.
We will use the boundary term method [8] to evaluate

the entanglement entropy (3) [46]. At the classical level,
Zn ¼ expð−Srn½Mn�Þ where Srn½Mn� is the renormalized
Euclidean action on a bulk manifold Mn with replica
symmetry and the set of fixed points Cn. In the sense of
Eq. (1), the boundaries of Mn and Cn are N n and ∂A,
respectively. Replica symmetry requires that Srn½Mn� ¼
nSrn½M̂n�, where the orbifold M̂n ≡Mn=Zn has an
asymptotic boundaryN 1 and a conical defect with opening
angle 2π=n at a co-dimension 2 surface Cn. As was
discussed in Ref. [8], the conical defect will not contribute
to Srn½M̂n�. At the classical level, the entanglement entropy
can then be calculated by

SEE ¼ ∂nSrn½M̂n�jn→1 ¼ ∂nSE½M̂n�jn→1; ð12Þ
where SE is the bulk Euclidean action. The second equality
above is due to the compatibility between the asymptotic
expansion (1) and the near cone expansion (4), which
guarantees that the asymptotic boundary terms cancel out.
For small n − 1, we see the difference between the
metric (9) and Eq. (4) is of order n − 1, and therefore
SEE ¼ ðδnSE=n − 1Þjn→1.
The variation of the Lagrangian L can be written in the

following form

δL ¼
X
i

Eϕi
δϕi þ dΘðϕi; δϕiÞ; ð13Þ

where the ϕi represent all the metric and matter fields, and
the Eϕi

are their corresponding EOMs. The presymplectic
form Θ is only defined up to the addition of an exact form,
Θ → Θþ dYðϕi; δϕiÞ. Different choices of Y will affect
asymptotic charges, and thus affect how holography works,
see Ref. [29] for more discussion. Thus, we propose the
third main modification to the Lewkowycz-Maldacena
procedure: the entanglement entropy can be calculated
using the presymplectic structure, which is subject to some
ambiguity. The ambiguity is fixed by requiring holography
to work in the correct way. More explicitly,

SEE ¼ −
Z

dΘðϕi; δnϕiÞ
n − 1

����
n→1

¼
Z
γA×S1

Θðϕi; ∂nϕiÞjn→1;r→0; ð14Þ

which is just a surface integral on γA after we integrate out τ
along the τ circle S1.
Note that most of the discussions are general, although

we used some explicit expressions for some special
examples in order to illustrate the idea.
Review of WAdS3 in the S-dual dipole truncation.—In

this section, we review the asymptotic symmetry analysis
of WAdS3 in the three-dimensional S-dual dipole trunca-
tion [47] (see also Ref. [48] for other consistent truncations)

S ¼ 1

16πG3

Z
d3x

ffiffiffiffiffiffi
−g

p �
R − 4ð∂UÞ2 − 4

l2
e−4UA2

þ 2

l2
e−4Uð2 − e−4UÞ − 1

l
ϵμνρAμFνρ

�
; ð15Þ

a consistent truncation of type II B supergravity. WAdS3 is
a classical solution with constant U. Following Ref. [8], we
assume that the hairless classical solution with replica
symmetry is the dominant contribution to the Renyi
entropy around n ¼ 1, which means that all the propagating
modes are turned off [18]. In the following, we will only
consider the classical contribution, and will focus on the
sector with fixed U. In terms of an auxiliary metric ~gμν and

field ~Aμ given by

~gμν ¼ e−4Ugμν þ AμAν; ð16Þ
~Aμ ¼ Aμ; ~Aμ ¼ ~gμν ~Aν ¼ Aμ; ð17Þ

the EOMs of the sector with fixed U can be written as

~Rμν þ
2

l2
~gμν ¼ 0; ð18Þ

~Fμν ¼
2

l
~ϵμνλ ~A

λ; ~A2 ¼ 1 − e−4U ð19Þ

with A being a Killing vector in both ~g and g

∇ðμAνÞ ¼ ~∇ðμ ~AνÞ ¼ 0: ð20Þ

Equation (18) is just the EOMs of the three-dimensional
Einstein gravity with a negative cosmological constant
−1=l2, which means that ~g is locally AdS3. Equations (19)
and (20) define a self-dual Killing vector ~A with constant
norm. On the other hand, given a locally AdS3 solution ~g,
and a self-dual Killing vector ~A with constant norm, then
Eq. (16) uniquely defines a solution of the S-dual dipole
theory. In particular, the metric gμν ¼ e4Uð~gμν − ~Aμ

~AνÞ is
then locally WAdS3 by definition.
A Dirichlet type of boundary conditions in support of

the WAdS3=CFT2 conjecture [26] were found in Ref. [29].
In the sector with fixed U, the boundary conditions can be
written as

ds2

l2
¼ ð1 − χÞ−1ðd~s2 − A2Þ; ð21Þ
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A
l
¼ χeΦdtþ −

�
e−Φ

2
σ−2 þ χeΦL

2k
σ2
�
dt−; ð22Þ

d~s2

l2
¼ dσ2 − dtþdt−

σ2
−
χe2ΦL

k
σ2dtþdt− þ L

k
ðdt−Þ2

þ
�1
4
ð∂þΦÞ2 þ χe2Φ

	
ðdtþÞ2 þ ∂þΦ

σ
dσdtþ; ð23Þ

where χ ¼ 1 − e−4U is a constant, Φ ¼ ΦðtþÞ, and
L ¼ Lðt−Þ. For the WAdS3 black string solution, both Φ
and L are constant. Note that this asymptotic expansion
terminates, and Eq. (21) is the full nonlinear solution of the
S-dual dipole theory with U fixed. The dual field theory is
then defined on a fixed two-dimensional Minkowski space

ds2boundary ≡ γð0Þij dx
idxj ¼ −dtþdt− → dzdz̄; ð24Þ

where tþ → z, t− → −z̄ bring the solution to the Euclidean
signature. Note that Eq. (21) is of the form of Eq. (1), with
the first term coming from the expansion of the auxiliary
metric d~s2, and

warping ¼ −e4UA2jσ→0: ð25Þ
As was argued in Ref. [29], the asymptotic symmetry group
is generated by left and right moving Virasoro generators if
we fix the ambiguity in the presymplectic structure by
choosing

Y ¼ −
1

16πG3

ϵμαβAαδAβdxμ; ð26Þ

then, the presymplectic structure can be written as
Θ ¼ ½1=ð16πG3Þ�ðΘg þΘA þΘYÞ, where Θg and ΘA are
the boundary terms that can be read directly from the
variation of the action in the gravity sector and vector
sector, respectively, and ΘY ¼ 16πG3dY. There are no
contributions from the scalar sector for constant U. With
the choice of Eq. (26), the S-dual dipole theory on WAdS3
has the same symplectic structure as that of Einstein gravity
on AdS3 defined by Eq. (16)

Θ ¼ ~Θ: ð27Þ
With the boundary condition (21), and the choice of

the presymplectic structure (26), a standard analysis in the
manner of Brown and Henneaux [49] shows that the
asymptotic symmetry group of WAdS3 in the constant
U sector of Eq. (15) is generated by two sets of Virasoro
generators, which indicates that the holographic dual is a
CFT2 [18] at the semiclassical approximation.
Generalized gravitational entropy for WAdS3.—Now,

we try to find the holographic entanglement entropy for
WAdS3. At this point, we assume a standard replica trick
for the CFT, and only consider the classical contributions.
We need to write down a near curve ansatz that is
compatible with the boundary condition (21). The AdS3
metric d~s2 with Dirichlet boundary conditions can be

written in the form of Eq. (10). Because of relation (16),
a natural ansatz for ds2 is then to set

tilting ¼ −e4UA2jr→0: ð28Þ
This choice guarantees that the criterion (7) is satisfied.
Effectively, this means that we expand g by expanding the
auxiliary metric ~g in the form of Eq. (5) without tilting:

ds2 ¼ e4Uðd~s2 − A2Þ; ð29Þ
d~s2 ¼ n2dr2 þ r2dτ2 þ ð~gyy þ 2KðnÞ

ayyxaÞdy2
þ subleading: ð30Þ

For n ¼ 1, there is a local coordinate transformation
between Eqs. (30) and (23), which determines the expan-
sion of A as well. For small n − 1, δng and δnA should
satisfy the linearized equations, which means that δn ~g and
δn ~A satisfy the linearized form of Eqs. (18) and (19). Note
that at the fixed U sector, ~A is not dynamical, and hence
does not correspond to a source. Thus, we do not set any
periodicity condition to ~A independently. Note that this will
not break the replica symmetry of the on-shell action
Srn½Mn�. On the other hand, δn ~g appears in the symplectic
form, which means that we should impose the periodicity
condition to the trace of the extrinsic curvature

KaðτÞ ¼ Kaðτ þ 2πÞ; δnKaðτÞ ¼ δnKaðτ þ 2πÞ; ð31Þ
where Ka ¼ ~gyyKayy. Plugging Eqs. (30) and (31) into the
linearized EOMs (18), we find Ka ¼ 0. This indicates that
the curve selected by replica symmetry is a geodesic in the
auxiliary AdS3 spacetime with metric ~g, but not necessarily
a geodesic in the original WAdS3. Furthermore, using
Eqs. (14) and (27) we get

SEE ¼
Z

2π

0

dτ
Z

dy
ffiffiffi
~g

p
~Θrðϕi; ∂nϕiÞjn→1;r→0

¼ 1

4G3

Z
γA

ffiffiffiffiffiffi
~gyy

q
dy ¼

gLengthðγAÞ
4G3

; ð32Þ

where ~Θμ ¼ − 1
2
~ϵμνρ ~Θνρ and gLengthðγAÞ denotes the length

of γA calculated with the metric ~g. We see that the
holographic entanglement entropy is the geodesic length
using the auxiliary metric ~g. The direct calculation of SEE in
the original WAdS3 (see Ref. [18]) gives the same result.
For a WAdS3 parametrized by χ, Φ, L̄, the auxiliary

metric ~g is a Banados-Teibelboim-Zanelli (BTZ) black hole
with temperature Tþ ¼ ffiffiffi

χ
p

eΦ, T− ¼ ffiffiffiffiffiffiffiffi
L=k

p
. Therefore, the

holographic entanglement entropy of region A can be
written as

SEEðTþ; T−;AÞ ¼ c
6
log

�
sinhðTþΔtþÞ

εTþ

sinhðT−Δt−Þ
εT−

�
;

ð33Þ
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where ϵ ¼ σ0 is the UV cutoff. This result agrees with the
CFT expectation.
We can also evaluate the entropy formula (32) at the

horizon. It is easy to check that a spacelike geodesic at the
horizon of a WAdS3 black string is also a geodesic of
the auxiliary AdS3 black string, and Eq. (32) gives the same
result as HRT. Therefore, our result is compatible with the
intuition that the area law is universal, and that the dipole
deformation is an irrelevant deformation.
World-line action as the holographic entanglement

entropy.—Although the curve γA is not necessarily a
geodesic in the WAdS3, we find it is actually the trajectory
of a charged particle moving in the WAdS3. Furthermore,
in WAdS3, the holographic entanglement entropy SEE is
given by the least action of this charged particle. The
geodesic equation in the AdS3 can be written in terms of the
original WAdS3 as

ẍμ þ Γμ
αβ _x

α _xβ ¼ q
m
Fμ

ν _xν; ð34Þ

gμν _xμ _xν ¼ 1;
q
m
≡ Aμ _xμe4U; ð35Þ

wherewe have used the fact thatA is a Killing vector, and the
dot denotes the derivativewith respect to the affine parameter
along the curve.Also, Eq. (34) canbederived from theworld-
line action of a particle with mass m and charge q

Sm;q ¼
m
4G3

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνdxμdxν

q
þ q
4G3

Z
A ð36Þ

with the gauge choice and additional constraint

gμν _xμ _xν ¼ 1;
q
m

¼ Aμ _xμe4U; ð37Þ

which fixes the reparametrization symmetry and the con-
served momentum along Aμ, respectively. Solving the
system (36) and (37) with one end point p1 on the boundary
will determine the other end point p2 [50].
Furthermore, with the choice

m ¼ e−2U(1þ e−4U
�
q
m

�
2

)
−1
2

; ð38Þ

the on-shell action Sm;q on this solution calculates the
entanglement entropy of the an intervalA with the two end
points p1 and p2, i.e., Sm;q ¼ SEEðAÞ.
Similar discussions appear in Ref. [34], where the

entanglement entropy of a single interval in the WCFT
is holographically associated with the world-line action of a
charged particle in lower spin gravity.
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