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We incorporate gauge-invariant local composite operators into the twistor-space formulation of N ¼ 4

super Yang-Mills theory. In this formulation, the interactions of the elementary fields are reorganized into
infinitely many interaction vertices and we argue that the same applies to composite operators. To test our
definition of the local composite operators in twistor space, we compute several corresponding form
factors, thereby also initiating the study of form factors using the position twistor-space framework.
Throughout this Letter, we use the composite operator built from two identical complex scalars as a
pedagogical example; we treat the general case in a follow-up paper.
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Introduction.—The study of the simplest interacting
gauge theory in four dimensions, namely, N ¼ 4 super
Yang-Mills theory (SYM), has led to a plethora of
important theoretical insights, such as holography
(AdS=CFT), integrability in the planar limit, on-shell
methods, and more. Moreover, the theory can be formu-
lated in twistor space [1], which has been an efficient
setting for computing on-shell quantities such as ampli-
tudes [2–6], and relating them to lightlike Wilson loops
[7–9]. The action of N ¼ 4 SYM in twistor space is the
sum of two parts S1 þ S2, with S1, introduced in Ref. [10],
describing the self-dual part and S2, referred to as the
interaction piece, immediately giving the maximally hel-
icity-violating (MHV) tree-level scattering amplitudes [11].
However, computations involving off-shell quantities, such
as form factors or correlation functions of gauge-invariant
local composite operators (composite operators), are less
straightforward in the twistor formalism, though some
progress has been made [12,13]. To tackle off-shell objects,
one needs a proper definition of composite operators in
twistor space, which is the main subject of this Letter [14].
In the usual space-time formulation, the composite

operator O consists of a single term that immediately
determines its vertex. In contradistinction, we argue that the
twistor-space representation ofO (or rather its vertex) must
contain infinitely many terms as it has to describe all
interactions of O with elementary particles at minimal
MHV degree. In particular, all MHV tree-level form factors
of the operator O have to be given immediately by the
operator vertex; an elementary counting of the MHV
degree shows that they cannot contain any twistor-space
propagators and hence also no interaction vertices.
In this Letter, we explicitly demonstrate this principle

using the gauge-invariant local composite operator

O0 ¼ 1

2
Tr½ϕ2

ab�; ð1Þ

built out of two identical complex scalars. In particular, we
determine the correct twistor-space vertex for this operator.
An algorithm for generating the vertices for all operators
using Wilson loops will be given in a follow-up paper.
The definition of a composite operatorO in twistor space

can be probed by computing its tree-level MHV form factor
with external on-shell states A1;…; An and comparing this
to data from the literature. Tree-level MHV form factors are
the simplest quantities that contain a composite operator
and hence provide an ideal testing ground for our definition
of composite operators in twistor space [15]. Letting pi be
the momenta of the on-shell states, and q the momentum of
O, the form factor is defined as the expectation value

FOð1A1 ;…; nAn ; qÞ

¼
Z

d4x
ð2πÞ4 e

−iqxhA1ðp1Þ � � �AnðpnÞjOðxÞj0i: ð2Þ

Form factors in N ¼ 4 SYM theory are also interesting in
their own right and have received increasing attention, both
at weak coupling [16–37] and at strong coupling [38–40].
In comparison to amplitudes, however, where all tree-level
expression [41] as well as the unregularized integrand of all
loop-level expressions [42] have been found, much less is
known for form factors; see Ref. [43] for the state of the art.
In particular, the form factors of the operator O0 are also
phenomenologically interesting, as they are related to the
Higgs-to-gluons amplitude in QCD; cf. Ref. [23].
A first attempt at composite operators…—We refer to

Ref. [44] for an introduction to the supertwistor methods
that we shall use here. We write supertwistorsZ ∈ CP3j4 as
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Z ¼ ðλα; μ _α; χaÞ, where the χa are fermionic, α _α ∈ f1; 2g,
and a ∈ f1; 2; 3; 4g. Supertwistor space is naturally related
to chiral Minkowski superspaceM4j8, which is obtained by
appending eight Graßmann variables θαa to each point xα _α

in Minkowski space. Each point ðx; θÞ in M4j8 corresponds
to a unique projective line in supertwistor space given by
the set of supertwistors,

Z ¼ ðλα; ixα _αλα; iθaαλαÞ; λ ∈ CP1: ð3Þ

For brevity, we denote a line in supertwistor space by x
instead of ðx; θÞ and we denote by ZxðλÞ the supertwistor
(3) on the line x given by the spinor λ.
In order to obtain a field Φ in space-time, the standard

prescription is to Penrose transform [45,46] a field in
twistor space ~Φ; i.e., integrating the twistor-space field ~Φ
over the line in CP3j4 corresponding to ðx; θÞ as

ΦðxÞ ¼
Z
CP1

Dλ ~Φ(ZxðλÞ); ð4Þ

where Dλ ¼ hλdλi=2πi. The angular brackets are defined
as hλλ0i ¼ λαλ0α with ϵαβλα ¼ λβ and ϵ12 ¼ 1. For future
reference, we note that integrals over the spinors λ are
always taken over the projective line CP1, so that we can
omit this from the integral sign.
The twistor action [1] is written using a single con-

nection superfield A introduced in Ref. [47]. This super-
field combines the on-shell degrees of freedom of N ¼ 4

SYM theory—the two helicity �1 gluons g�, the four
helicity 1

2
fermions ψa, and their antiparticles ψa and the six

scalars ϕab—as

AðZÞ ¼ gþ þ χaψa þ
1

2
χaχbϕab

þ 1

3!
χaχbχcψdϵabcd þ χ1χ2χ3χ4g−; ð5Þ

where the components fields g�, … do not depend on the
Graßmann variables χ. According to Eq. (4), a natural first
attempt [48,49] for the (gauge-covariant) scalar field ϕabðxÞ
is given by a Penrose transform

ϕabðxÞ¼?
Z

Dλh−1x ðλÞ ∂
2AðλÞ

∂χa∂χb hxðλÞjθ¼0; ð6Þ

where AðλÞ≡A(ZxðλÞ). In Eq. (6), we set θ ¼ 0, imply-
ing χa ¼ iθαaλα ¼ 0, after taking the derivatives, because
we are only interested in the ϕab component of Eq. (5).
In addition, we have introduced hxðλÞ—the frame on x that
trivializes the connection A along the line x and thus
ensures gauge invariance when taking traces of products of
these fields [49].
Therefore, using the ansatz (6), the operator O0 built out

of two scalars would read

O0ðxÞ ¼ 1

2
Tr½ϕ2

ab�ðxÞ¼?
1

2

Z
DλDλ0Tr

�∂2AðλÞ
∂χa∂χb

×Uxðλ; λ0Þ
∂2Aðλ0Þ
∂χ0a∂χ0b Uxðλ0; λÞ

�
jθ¼0

; ð7Þ

where Uxðλ; λ0Þ ¼ hxðλÞhxðλ0Þ−1 is the parallel propagator
for the connection A. It can be expanded as

Uxðλ; λ0Þ≡Ux(ZxðλÞ;Zxðλ0Þ)

¼ 1þ
X∞
m¼1

Z hλλ0iD~λ1 � � �D~λmAð~λ1Þ � � �Að~λmÞ
hλ~λ1ih~λ1 ~λ2i � � � h~λmλ0i

:

ð8Þ

In order to obtain form factors (2), which are naturally
expressed in momentum space, we insert external on-shell
momentum states [5] of (super-)momentum P¼ðpα _α;ηaÞ¼
ðpα;p _α;ηaÞ:

APðZÞ ¼ 2πi
Z
C

ds
s
esðμ _αp _αþχaηaÞδ2ðsλ − pÞ; ð9Þ

where δ2ðλÞ ¼ δ1ðλ1Þδ1ðλ2Þ with the δ1ðzÞ denoting the δ
function on the complex plane. Let us compute
FO0 ð1þ;…; iϕab ;…; jϕab ;…; nþ; qÞ: the (color-ordered)
form factor of O0 with n external particles, two of which
are scalars ϕab at positions i and j, while the remaining
ones are positive-helicity gluons. Here, only the terms in
Eq. (8) with the appropriate number of A’s contribute,
namely, those with j − i − 1 from oneUx and nþ i − j − 1
from the other. Inserting the on-shell states Eqs. (9) into
Eq. (8) as well as directly into Eq. (7), and then integrating
over s and the corresponding λ, effectively cancels s and
replaces λα → pα, μ _α → ixα _αpα, and χa → iθαapα due to
the δ2 function and the parametrization (3). Selecting the
coefficient of the corresponding η’s and Fourier trans-
forming in x as

R ½d4x=ð2πÞ4�e−iqx yields the desired form
factor

FO0 ð1þ;…; iϕab ;…; jϕab ;…; nþ; qÞ

¼ −
hiji2δ4ðq −

P
n
k¼1 pkÞ

h12i � � � hn1i ; ð10Þ

which perfectly agrees with the result of Ref. [17]. We
would like to comment that the parallel propagators
Uxðλ; λ0Þ in Eq. (7), introduced in order to ensure gauge
invariance, are responsible for inserting infinitely many
vertices in the description of the composite operators
related to their MHV coupling to positive-helicity gluons.
…and where it fails.—While the successful computation

of the form factor (10) is encouraging, the ansatz (7) fails
once one considers external states involving fermions.
Specifically, let us take the MHV form factor
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FO0 ð1ψa ; 2ψb ; 3ϕab ; qÞ ¼ δ4ðq −
P

3
k¼1 pkÞ

h12i ; ð11Þ

which was first calculated in Ref. [19]. However, using the
twistor-space machinery and Eq. (7), we would obtain zero.
This can be seen as follows. On the one hand, the
contribution to the form factor (11) has to come solely
from the operator O0 itself, since the inclusion of an
interaction vertex from S2 connected by a propagator to
O0 would increase the MHV degree. On the other hand,
every form factor obtained from Eq. (7) will necessarily
contain two on-shell scalars due to the ∂2A=ð∂χa∂χbÞ
terms, while Eq. (11) contains only one.
We conclude that it is necessary to add extra terms

encoding the contribution to the form factor (11) directly
into the twistor-space expression of the operator O0.
Our proposal.—As previously argued, the twistor-space

avatar of any operatorO has to contain the terms that allow
the elementary fields to split into different ones while
preserving the MHV degree. Hence, we propose to com-
plete Eq. (6) to

ϕabðxÞ¼
Z

Dλh−1x ðλÞ∂
2AðλÞ

∂χa∂χbhxðλÞjθ¼0

þ
Z

DλDλ0

hλλ0i h−1x ðλÞ∂AðλÞ
∂χa Uxðλ;λ0Þ

∂Aðλ0Þ
∂χ0b hxðλ0Þjθ¼0

−ða↔bÞ: ð12Þ

It is depicted in Fig. 1. An immediate observation is that in
Eq. (12) the χ derivatives are now distributed supersym-
metrically, unlike in Eq. (6).
Our proposal for the correction of the expression (7) is

now obtained by squaring Eq. (12) and taking the trace.
Since it has nine terms, we refrain from writing it out.
Using Eq. (12) and the methods previously employed leads
to the correct result (11). We can do even better and
straightforwardly derive the MHV super form factor of O0:

FO0 ð1;…; n; qÞ

¼ δ4ðq −
P

n
k¼1 pkÞ

Q
c¼a;bð

P
i<jhijiηicηjcÞ

h12ih23i � � � hn1i : ð13Þ

This agrees with the results of Ref. [19] and with Eqs. (10)
and (11) when the respective components are specified.
Looking at Eq. (12) and recalling the product rule, one is

tempted to try to generate Eq. (12) by some kind of double
derivative. For this, we must replace the operator at point x
by a polygonal lightlike Wilson loop [50] with an appro-
priate number of edges x1;…; xn:

W ¼ Tr½Ux1ðZ1;Z2Þ � � �UxnðZn;Z1Þ�; ð14Þ

where the Zi are the twistors at the intersection of the line
xi−1 and xi. We can then act on W with four θ derivatives
and finally shrink the Wilson loop back to a point,
recovering our expression for O0. We describe this pro-
cedure in full detail in a forthcoming publication [51],
where we also derive the analogs of Eq. (12) for the rest of
the field content of N ¼ 4 SYM theory.
Summary and outlook.—In this Letter, we described how

to incorporate composite operators into the twistor-space
formulation of N ¼ 4 SYM theory. Just as translating the
action to twistor space shuffles the interaction terms into
infinitely many vertices, so does the translation of the
composite operators require the repackaging of infinitely
manyoperator vertices. Form factors provide the ideal testing
ground for our construction as they are the simplest quantities
that contain composite operators. Thus, we simultaneously
initiated the study of form factors in N ¼ 4 SYM theory
using the position twistor-space framework.
In a forthcoming publication [51], we use the Wilson

loop that we hinted at above to derive the tree-level MHV
super form factors of all composite operators. We extend
the framework to NkMHV form factors and correlation
functions in a further publication [52].
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