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We prove that the fully discrete lattice Boltzmann method is invariant with respect to Galilean
transformation. Based on this finding, a novel class of shifted lattices is proposed which dramatically
increases the operating range of lattice Boltzmann simulations, in particular, for gas dynamics applications.
A simulation of vortex-shock interaction is used to demonstrate the accuracy and efficiency of the proposed
lattices. With one single algorithm it is now possible to simulate a broad range of applications, from low
Mach number flows to transonic and supersonic flow regimes.

DOI: 10.1103/PhysRevLett.117.010604

The lattice Boltzmann (LB) method [1–5] is a modern
approach to the simulation of complex flows such as
turbulence [6], surface and multiphase phenomena
[7–11], microemulsions and soft-glassy materials [12],
relativistic hydrodynamics [13], hemodynamics [14], and
ab initio electronic structure calculations [15]. The LB
method is a recast of the continuum fluid mechanics in a
form of a fully discrete kinetic equation for the populations
of designer particles fiðx; tÞ, with the simplest rule of
propagation on a space-filling lattice formed by discrete
velocities vi, i ¼ 1;…; Q, in discrete-time steps, and
relaxation at the nodes x to a local equilibrium feqi ðx; tÞ.
As an indicator example, we write a typical LB equation:

fiðxþ vi; tþ 1Þ ¼ fiðx; tÞ þ ω(feqi ðx; tÞ − fiðx; tÞ); ð1Þ

where the propagation is on the left and postrelaxation is on
the right, while the relaxation parameter ω encodes trans-
port coefficients.
However, existing LB models violate the basic physical

requirement of Galilean frame indifference. This violation
manifests itself in the use of symmetric lattices, which
amounts to fixing a preferred reference frame “at rest.”
While symmetric lattices work well for incompressible
flows, they are quite restrictive when the flow speed
approaches the speed of sound [16–21]. For example, in
the case of a shock wave traveling at a speed U relative to a
laboratory reference frame, the physics of the problem
clearly prefers the comoving reference frame. So, the
question arises: Is LB bound to the once chosen, traditional
reference frame at rest, or is there a way to formulate LB in
other Galilean reference frames? This question is all but
academic, as incompressible and compressible flows are
fundamentally different [22], with turbulence on one end
and shock waves on the other. The difficulty in bridging
these two limits is well recognized in the conventional fluid
dynamics [23,24]: Simulation of compressible flows
requires dissipation to stabilize shocks, while accurate
results for turbulence are achieved with low numerical

dissipation. Thus, a single LB algorithm with the propa-
gation Eq. (1) for both high and low Mach numbers is
highly desirable.
Here we prove that the LB method stays invariant in any

Galilean reference frame. The proof is based on a simple
observation about the Galilean invariance of the lattice
equilibrium distribution. Based on that, we introduce
shifted lattices (see the example in Fig. 1) which, none-
theless, are realized with the standard propagation-collision
algorithm Eq. (1), on the same grids and with the same
boundary conditions as in the familiar symmetric case. We
demonstrate a dramatic increase in operation capabilities of
these shifted lattices by a complex vortex-shock interaction
benchmark.
We begin with a brief summary on the LB models in the

reference frame at rest [25–27]. Using the nomenclature
DdQnd for a lattice with Q ¼ nd speeds in D ¼ d spatial
dimensions, the hierarchy of lattices is constructed as tensor
products of D copies of one-dimensional symmetric
velocity sets Vn. We shall consider V7 ¼ f−3;−2;−1; 0;
1; 2; 3g below as an example of the supersonic lattice
Boltzmann simulation. For each velocity vi ∈ Vn, one
specifies a weight Wið0; TÞ. To that end, consider the
Maxwellian at unit density:

FIG. 1. Discrete velocities in two Galilean reference frames.
Left: Symmetric lattice, standard reference frame (Ux ¼ 0,
Uy ¼ 0). Right: Shifted lattice, comoving reference frame
(Ux ¼ 1, Uy ¼ 0).
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The weights for symmetric sets are found by matching the
moments of the Maxwellian Eq. (2) at U ¼ 0, fMv ð0; TÞ.
This reduces to a linear n × n algebraic system to be solved
for the weights (m ¼ 0;…; n − 1):

hWið0; TÞvmi i ¼ hfMv ð0; TÞvmi; ð3Þ
where the operator h� � �i stands for summation over discrete
velocity index i for the discrete case (left) or integration
over the continuous velocity v (right). In particular, for the
velocity set V7 the weights are W0ð0; TÞ ¼ ð36 − 49T
þ42T2 − 15T3Þ=36, W�1ð0;TÞ ¼ Tð12− 13Tþ 5T2Þ=16,
W�2ð0; TÞ ¼ Tð−3þ 10T − 5T2Þ=40, and W�3ð0; TÞ ¼
Tð4 − 15T þ 15T2Þ=720. Once the weights are specified,
the rest follows: For the symmetric lattice D3Qn3, the
weight of each discrete velocity vi is the algebraic product
of the one-dimensional weights corresponding to the
projection of vi onto the natural Cartesian directions,
Wi ¼ WixWiyWiz, where Wiα is the one-dimensional
weight of viα ∈ Vn. The weights uniquely specify the
entropy function [28],

H ¼ hfi ln ðfi=WiÞi; ð4Þ

while the equilibrium is defined as a minimizer thereof
under the constraints of local density ρ ¼ hfii, momentum
ρu ¼ hfivii, and energy ρðDT þ u2Þ ¼ hfiv2i i. While the
minimization may be done in various ways (exact solution
in some cases, expansion of Lagrange multipliers, or direct
numerical minimization), we stress that the weights defin-
ing the entropy function Eq. (4) is key. Moreover, we note
that the accuracy of the resulting LB model is always
limited by the finiteness of the primary one-dimensional
velocity set Vn: Once the temperature T deviates too far
from the reference temperature T0 and/or the magnitude of
the local flow velocity u deviates away from u ¼ 0,
the moments of the LB equilibrium drift away from the
corresponding moments of the local Maxwellian. The
reference temperature is the point at which the deviations
are minimal; it is known for any admissible set Vn;
cf. Refs. [25–27]. This is a significant drawback as it
requires unduly large sets Vn to reach high Mach number
flow regimes. Clearly, the origin of this is the choice of the
preferred reference frame U ¼ 0 at the outset. We wish to
challenge the notion of a reference frame at rest; instead, we
prefer to define the equilibrium in a frame moving, say,
with the velocity U in the x direction. This is achieved by
considering a shifted discrete velocity set V 0

n with the
velocities

v0i ¼ vi þU; vi ∈ Vn; ð5Þ

and finding the shifted weights WiðU; TÞ by matching the
moments of the Maxwellian fMv ðU; TÞ (2). Instead of
Eq. (3), we thus have

hWiðU; TÞ½vi þ U�mi ¼ hfMv ðU; TÞvmi: ð6Þ
The key observation is that the weights WiðU; TÞ are
Galilean invariant: For any set Vn and for any shift U,
we have

WiðU; TÞ ¼ Wið0; TÞ: ð7Þ
The proof of Eq. (7) follows immediately from Galilean
invariance of the moments of the Maxwellian: Using
the binomial theorem and Eq. (3), we write for
m ¼ 0;…; n − 1,

hfMv ðU; TÞvmi ¼
X

m

k¼0

�
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k

�
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i i

¼ hWið0; TÞ½vi þU�mi:
Hence, Eq. (6) is equivalent to

h½WiðU; TÞ −Wið0; TÞ�½vi þ U�mi ¼ 0: ð8Þ
Since the shift U is arbitrary, the result Eq. (7) follows.
Galilean invariance of the weights Eq. (7) has a number

of immediate important implications. First, the construction
of the discrete velocities through tensor products in higher
dimensions remains as before. For example, in two dimen-
sions, the shift U in the x direction corresponds to the
tensor product Vnx

0 ⊗ Vny. We shall use this example
below. Second, the symmetric velocity sets generate
space-filling lattices. This is crucial for the realization of
the time-marching LB scheme Eq. (1). Now, if the shiftU is
itself integer, the corresponding shifted lattice is also space
filling. For example, with U ¼ 1, the shifted set V 0

7

becomes V0
7 ¼ f−2;−1; 0; 1; 2; 3; 4g. The shifted and the

symmetric lattices, with the discrete velocities V7x
0 ⊗ V7y

and V7x ⊗ V7y, respectively, are shown in Fig. 1. Next,
the weights corresponding to the velocities of the shifted
lattice are the same as for the symmetric case:
WiðU; TÞ ¼ Wixð0; TÞWiyð0; TÞ. Moreover, since the
weights do not change under a transform to a comoving
reference frame, the entropy function is Galilean invariant,
and is given by Eq. (4). Consequently, the equilibrium
populations are form invariant. They are found by the same
minimization techniques as in the familiar symmetric case,
that is, H → min, subject to the constraints ρ ¼ hfii,
ρu ¼ hfiv0ii, and ρðDT þ u2Þ ¼ hfiðv0iÞ2i, where v0i are
shifted velocities.
In summary, the surprising feature of these shifted,

nonsymmetric lattices is that simulations in the comoving
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reference frame require no change in the LB algorithm and
can be performed using the same grids as in the symmetric
case. All that is needed is to replace the velocities vi in the
propagation part of the LB equation (1) with the velocities v0i
of the shifted lattice described above. This is particularly
appealing for the simulation of compressible flows: The
operation window of the comoving lattice Boltzmann is
centered around u ¼ U, in contrast to the symmetric case
which operates around u ¼ 0. Below, we use the entropic
LBmodel (ELBM) introduced inRef. [27] for the symmetric
lattice (details of the algorithm can be found in Ref. [29]).
Here, the ELBM [27] is realized on the shifted lattice of
Fig. 1. The accuracy of the scheme was tested using the
Green-Taylor vortex, and the second-order convergence
pertinent to LB was confirmed also for shifted lattices.
An immediate and stark implication of the shifted lattice is

seen in the following example. Figure 2 shows the pressure
contours of a vortex advected by a uniform flow at three
different Mach numbers, Maa ¼ Uin=

ffiffiffiffiffiffiffiffiffi

γT in
p

, γ ¼ 1.4 is the
adiabatic exponent for air, for two different lattice configu-
rations: the symmetric D2Q72 and its shifted version with
U ¼ 1 in the x direction (see Fig. 1). The vortex Mach
number, employed to define the tangential velocity of the
vortex, uθðrÞ ¼ Mavr exp ½ð1 − r2Þ=2�, was Mav ¼ 0.5,
where r is the reduced radius r ¼ r0=R, and R is the vortex
radius. For a vortex advected with Maa ¼ 0.8, both the
symmetric and the shifted lattice give the same result. As the
advection speed is increased to Maa ¼ 1.3, the standard
symmetric lattice shows vortex deformation whenever the
localMach number reaches values greater thanMaloc > 1.6.
For the shifted lattice this does not happen, and the vortex
retains its shape. By further increasing the Mach number to
Maa ¼ 1.8, the standard lattice shows a completely distorted
vortex while the shifted lattice operates well. Note that a
majority of high Mach number flow applications, such as
transonic and supersonic wings, converging-diverging
nozzles, and shock-turbulence interaction, exhibit a large

mean flow direction which can be readily chosen as the shift
velocity. This shows a large application domain for LB in a
comoving frame.
In the remainder, a vortex-shock interaction is studied for

the first time using the LBmethod. Results are benchmarked
against the direct numerical simulation (DNS) of Ref. [30].
A two-dimensional vortex characterized by the Mach
number Mav ¼ 0.5 is advected at the inflow Mach number
Maa ¼ 1.2 and subsequently interacts with a stationary
shock front (seeMovie 1 in the SupplementalMaterial [31]).
A uniform grid 1680 × 1440 was used in the ELBM
simulation. Details on the numerical setup can be found
inRef. [30]. In Fig. 3, density ρ is comparedwith theDNS of
Ref. [30] at the time ta∞=R ¼ 8, where R ¼ 60 is the
characteristic radius of the vortex and a∞ ¼ 1 the speed of
soundupstreamof the shock front. One can see the deformed
shock front at x ¼ 0, the vortex at x≃ −5 and y≃ 0, and
reflected shocks developing from the original planar shock,
one of which remains connected to the vortex at this time.
Note the excellent match of density distribution between
DNS and ELBM. In Fig. 4 we compare the sound pressure
Δp ¼ ðp − psÞ=ps, where ps is the pressure behind the
shock wave. The radial sound pressure distribution in Fig. 4
was measured in the radial direction with the origin at the
vortex center, at the angle θ ¼ −45°with respect to the x axis

FIG. 2. Vortex advection at different Mach numbers. Top:
Shifted lattice, comoving reference frame Ux ¼ 1. Bottom:
Symmetric lattice, standard reference frame Ux ¼ 0. In the
standard reference frame, the vortex is distorted at Maa ≥ 1.3.

FIG. 3. Snapshot of density for both DNS (top) and ELBM
simulations (bottom) for the case Maa ¼ 1.2, Mav ¼ 0.5, and
Re ¼ 400. Contour levels are from ρmin ¼ 0.92 to ρmax ¼ 1.55
with an increment of Δρ ¼ 0.0053. The vortex moves from right
to left.
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and at different nondimensional times t ¼ 6, t ¼ 8, t ¼ 10.
From the plot one can notice how both the sound precursor
(upper soundpressure peak) and the second soundpropagate
radially from thevortex centerwith time.Moreover, the peak
sound corresponding to the maximum pressure decays with
time, for both the precursor and the second sound. Note that
the nonlinear acoustics is typically a small (about 0.5%)
perturbation on top of the main hydrodynamic pressure. The
excellent comparison between the DNS [30] and the present
ELBM in the comoving reference frame is evident also for
this sensitive phenomenon. Finally, the present simulation is
impossible with the symmetric lattice: In the laboratory
reference frame, the vortex moves locally with Maloc ≃ 1.7,
and is severely deformed even before it interacts with the
shock (cf. Fig. 2).
To conclude, we found that the lattice Boltzmann

equation is Galilean compliant. This surprising fact dis-
proves the long-standing view on lattice kinetic theory as
violating Galilean invariance by choosing the preferred
reference frame “at rest.” Based on that, we proposed
space-filling shifted lattices which allow us to simulate in a
uniform fashion the entire range of flows from incom-
pressible to trans- and supersonic flow regimes, with no
changes in the LB algorithm and no added computational
cost. A benchmark simulation of vortex-shock interaction
clearly demonstrates the accuracy and efficiency of the
shifted lattice Boltzmann method.
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