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We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase
estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves
Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from
failures, and can be run on a field programmable gate array. It also outperforms existing iterative phase
estimation algorithms such as Kitaev’s method.
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Introduction.—Eigenvalue estimation has been a corner-
stone of physics since the dawn of spectroscopy. In recent
years, ideas from quantum information have revolutionized
the ways that we estimate these values by providing
methods that require exponentially fewer experiments than
statistical sampling and total experimental time that satu-
rates the Heisenberg limit [1–8], which is the best possible
scaling allowed by quantum mechanics. This quantum
approach, known as phase estimation, is crucial to achiev-
ing many of the celebrated speedups promised by quantum
computing [9–13].
While great progress has been made towards optimizing

phase estimation, a number of gaps remain. Most notably,
existing approaches either require a large number of ancilla
qubits, are classically inefficient, or fail to extract infor-
mation about the phase as efficiently as their classically
inefficient brethren. Moreover, the majority of these meth-
ods are not analyzed in the presence of noise or other
experimental imperfections. Finally, these approaches
typically assume that the phase is static, or quasistatic,
throughout the experiment. This precludes phase estima-
tion from tracking time-dependent drifts in phase. These
gaps mean that many phase estimation algorithms are not
known to be robust to common errors present in modern
day experiments.
Here we address these shortcomings by proposing an

approach to iterative phase estimation that is based on a
new inference method that we call rejection filtering, and
by providing an efficient heuristic for adaptively selecting
near-optimal experiments. We call the phase estimation
algorithm that follows from rejection filtering phase esti-
mation, or RFPE. Our algorithm numerically approximates
Bayesian inference on the measurement outcomes to
estimate the most likely phase and its uncertainty.
Unlike the numerical methods for Bayesian inference
studied in [14,15], the method has miniscule memory
requirements which permit it to be employed in a memory
limited environment like a field programmable gate array

(FPGA). Our algorithm also inherits from Bayesian infer-
ence the ability to follow drifting eigenphases without
needing to explicitly model the dynamics of the phase.
Finally, we propose a novel method for detecting and
correcting inference errors that allows the method to track a
state’s depolarization in real time. These new capabilities
constitute an important advance for the field and under-
score the relevance of approximate Bayesian inference to
physics.
Before going into detail about our algorithm we will first

review the iterative phase estimation circuit and Bayesian
approaches to phase estimation. Iterative phase estimation
learns the eigenvalue of a given eigenvector of a unitary
matrix U ∈ C2n×2n from a set of experiments that are
performed on the quantum circuit [16]

where H is the Hadamard gate, Ujϕi ¼ eiϕjϕi for an
unknown eigenphase ϕ ∈ R, jϕi ∈ C2n , M ∈ N specifies
how many applications of U are applied conditioned on
the ancilla qubit being 1, and where ZðMθÞ ¼ eiMθZ for the
Pauli operator Z is a rotation that can be used to compare the
eigenphase of U to a known reference value. Most iterative
phase estimation algorithms use this circuit to infer the bits in
a binary expansion of ϕ. The process can be made optimal
(up to log� factors [8]) and also classically efficient.
Bayesian phase estimation.—Bayesian phase estimation

involves performing a set of experiments and then updating
a prior distribution over the true eigenphase using Bayes’
rule [2,8,17]. For example, if an experiment is performed
using M repetitions of U and using Zð−MθÞ, if a
measurement outcome E ∈ f0; 1g is observed then
Bayes’ rule states that the posterior probability distribution
for ϕ after observing the datum is
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PðϕjE; θ;MÞ ¼ PðEjϕ; θ;MÞPðϕÞR
PðEjϕ; θ;MÞPðϕÞdϕ : ð1Þ

The likelihood function Pð0jϕ; θ;MÞ, is

Pð0jϕ; θ;MÞ ¼ 1þ cosðM½ϕþ θ�Þ
2

;

Pð1jϕ; θ;MÞ ¼ 1 − cosðM½ϕþ θ�Þ
2

: ð2Þ

Note that we have assumed perfect visibility of measure-
ments in this likelihood function; that assumption can be
readily relaxed [18,19], such that we consider the perfect
visibility case for clarity. After using (1) to update the
posterior distribution we then set the prior distribution
to equal the posterior distribution. This process is then
repeated for each of the experiments in the data set.
Bayesian inference returns a posterior distribution over

the phase rather than a point estimate. The mean and
standard deviation of this distribution provide an estimate
of the true eigenvalue and the algorithm’s uncertainty in
that value. More sophisticated estimates of uncertainty,
such as credible regions, can also be extracted from the
posterior distribution [14,20].
Approximate Bayesian phase estimation.—Exact

Bayesian inference is impossible if the eigenphases are
continuous so approximations are needed to make the
procedure tractable. Rather than naïvely discritizing the
prior distribution, modern methods discretize by sampling
from the prior and then perform Bayesian inference on
the discrete set of samples (often called “particles”). These
particle filter methods are quite powerful and have become a
mainstay in computer vision and machine learning [21–23].
Despite their power, these methods are hard to imple-

ment and even harder to deploy in a memory limited
environment such as on an embedded controller or an
FPGA. With the increasing use of FPGAs in the control of
quantum information experiments [24–26], overcoming
this limitation presents a significant advantage.
RFPE follows a much simpler approach. Rather than

using a set of hypotheses that implicitly define a model for
the system, we posit a prior model and directly update it to
find a model for our posterior distribution. We achieve this
by using a Gaussian distribution with mean μ and variance
σ2 to model our initial prior, perform a Bayesian update on
samples drawn from the distribution, and then refit the
updated samples to a Gaussian distribution. This strategy is
used in a number of particle filter methods such as the
extended Kalman filter and assumed density filtering
[21,27]. We further optimize this process by approximating
the Bayesian inference step using rejection sampling. This
can reduce the memory required by a factor of 1000 or more,
as we need only consider a single sample at a time. Our
algorithm is described in the following, and the pseudocode
is given in the Supplemental Material [28]: (1) Perform the

experiment for given θ, M and observe the outcome
E ∈ f0; 1g. (2) Draw m samples from N ðϕjμ; σ2Þ.
(3) For each sample ϕj, assign ϕj to Φaccept with probability
PðEjϕj; θ;MÞ=κE, where κE ∈ ð0; 1� is a constant such that
PðEjϕj; θ;MÞ=κE ≤ 1 for all ϕj, E. (4) Return μ ¼
EðΦacceptÞ and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðΦacceptÞ
p

.
The resultant samples are equivalent to those drawn from

the posterior distribution PðϕjE;M; θÞ. To see this, note
that the probability density of a sample being accepted at
ϕ ¼ ϕj is PðEjϕ; θ;MÞN ðϕjμ; σ2Þ. Equation (1) then
implies

PðEjϕ; θ;MÞN ðϕjμ; σ2Þ ∝ PðϕjE; θ;MÞ; ð3Þ

which implies that the accepted samples are drawn from the
posterior distribution.
Although it is difficult to concretely predict the value of

m needed to make the error in the inference small, we show
in the Supplemental Material [28] thatm must scale at least
as the inverse square of the relative fluctuations in the
likelihood function. Similarly, Markov’s inequality shows
that m must scale at least as κE=

R
PðEjϕ; θ;MÞPðϕÞdϕ

to ensure that, with high probability, the mean can be
accurately estimated from the accepted samples. We
introduce κE to compensate for small expected likelihoods.
The main issue that remains is how to optimally choose

the parameters θ and M. One approach is to locally
optimize the Bayes risk [14], but the resulting calculation
can be too expensive to carry out in online experiments that
provide experimental results at a rate of tens of megahertz
or faster. This can be avoided using precomputed meas-
urement settings [35] or policies [7,36], which can sub-
stantially reduce the computational time needed to perform
an online inference. These approaches a priori limit the
number of measurements to be performed and can require
significant memory to store the policy.
Fortunately, the particle guess heuristic (PGH) can give

expedient and near-optimal experiments for this class of
likelihood functions in an online fashion, and with no
precomputation required [37],

M ¼ ⌈1.25
σ
⌉; θ ∼ PðϕÞ: ð4Þ

The constant 1.25 is chosen as it works well empirically.
It also approximately corresponds to the optimal choice of

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffi
5

pp
=2ϵ ≈ 1.27=ϵ under the assumption that

the Bayesian Cramér-Rao bound is saturated and Gaussian
priors are used (see the Supplemental Material [28]).
Figure 1 shows the error incurred using RFPE. The most

obvious feature is that the error shrinks exponentially with
the number of experiments (which is proportional to the
evolution time under the PGH) for m > 100. Roughly 150
experiments are needed for the method to provide 32 bits of
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accuracy in the median case. We discuss the scaling in the
mean in the Supplemental Material [28].
The number of experiments needed by RFPE scales as

O( logð1=ϵÞ), where ϵ is the target uncertainty, rather than
the O( logð1=ϵÞ log logð1=ϵÞ) scaling of Kitaev’s method
[1,3]. RFPE should therefore offer advantages for imple-
menting Shor’s algorithm in small quantum devices.
Concretely, after 150 experiments the median error for
Kitaev’s algorithm (with s ¼ 10) is roughly 107 times that
of RFPE. O( logð1=ϵÞ) scaling is further observed over
100 orders of magnitude in ϵ in the Supplemental Material
[28] and is optimal (as seen from a simple counting
argument).
Figure 2 compares RFPE to the information-theory

phase estimation (ITPE) method of Svore et al. [8].
Although ITPE is inefficient and is nonadaptive, it is exact
and so it is a natural benchmark to compare RFPE against.
We find ITPE requires nearly 5 times the applications of
U if ϕ ¼ 2πk=t for integer k < t and t ¼ 10 000.
Conversely, ITPE requires only 25 measurements to

identify the phase with 50% probability, whereas RFPE
requires 51 experiments if k is an integer. If the true value of
k is real valued and ITPE is left unmodified, then ITPE fails
to learn in the median because the long evolution times
chosen lead to contradictory possibilities that prevent ITPE
from converging to a unique answer. We correct this by
choosing M → ⌈M=2⌉ in such cases, which increases the
number of experiments to 35 but also reduces the exper-
imental time below that of unmodified ITPE. All three
methods therefore trade-off experimental and computa-
tional resources differently. This is especially salient
because ITPE is inefficient unlike RFPE.
In contrast to Shor’s algorithm, in metrological and

simulation applications the scaling of the error with the
total number of applications of U needed (or in the case
whereM is continuous, the total evolution time) is the most
significant metric. The Heisenberg bound states that the
error optimally scales as 1=T ¼ 1=

P
iMi here. Figure 3

shows that this scaling is saturated for RFPE. We further
observe that the mean error, the root-mean square error, and
a 95% confidence interval for the error follow an optimal

Oð1=TÞ scaling. RFPE therefore saturates optimal scaling
in this setting as well.
Phase estimation with depolarizing noise.—A criticism

that has been levied lately at phase estimation methods is that
they can be impractical to execute on non–fault-tolerant
quantum hardware [38–40]. This is because phase estimation
attains its quadratic advantage over statistical sampling by
using exponentially long evolutions. Decoherence causes
the resultant phases to become randomized as time progresses,
ultimately resulting in limM→∞Pð0jϕ; θ;MÞ ¼ 1

2
. Measure-

ments convey no information in this limit. It similarly may be
tempting to think that T2 fundamentally limits the accuracy of
phase estimation. Bayesian inference can, however, learn ϕ
using M ≈ T2 [14] for some noise models.
We model the effect of decoherence on the system by

assuming the existence of a decoherence time T2 such that

Pð0jϕÞ ¼ e−M=T2

�
1þ cosðM½ϕ − θ�Þ

2

�
þ 1 − e−M=T2

2
;

Pð1jϕÞ ¼ e−M=T2

�
1 − cosðM½ϕ − θ�Þ

2

�
þ 1 − e−M=T2

2
:

ð5Þ
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FIG. 1. Median errors in phase estimation for 10 000 random
initial choices of the true eigenphase.
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FIG. 2. Comparison of RFPE to ITPE for t ¼ 10 000 with 100
samples for ϕtrue ¼ 2πk=t at each measurement.
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FIG. 3. Median error vs evolution time for rejection filter phase
estimation for the case where M is continuous and T ¼ P

iMi.
The median error scales roughly as 4.7=T, and the dashed lines in
the inset figure gives a 95% confidence interval.
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This model is appropriate when a controlled U gate is slow
relative to the H- and Z-rotation gates.
Since T2 places a limitation on our ability to learn, we

propose a variation to (4),

M ¼ min

�
⌈1.25

σ
⌉; T2

�
: ð6Þ

The experiments yielded by (6) resemble locally optimized
experiments for frequency estimation, which saturate the
Cramér-Rao bound [18]; however, (6) requires nearly
100-fold less computing time to select an experiment.
The choice to cut off M at T2 can be understood using
the following argument. The Cramér-Rao bound for fre-
quency estimation scales as OðM−2Þ [41] in the absence of
decoherence. Equation (5) suggests that decoherence causes
the posterior variance to increase as O( expð2M=T2Þ).
Calculus reveals that M ¼ T2 optimally trades off these
tendencies [18], which justifies (6).
Figure 4 shows that RFPE smoothly transitions between

the exponential scaling expected at short times and the
polynomial scaling expected when decoherence becomes
significant. The error scales roughly as 1=N0.6 in this
polynomial regime, which is comparable to the 1=

ffiffiffiffi
N

p
scaling expected from statistical sampling. Depolarizing

noise, or diminished visibility [36], therefore does not
necessarily limit the accuracy of phase estimation.
Tracking eigenphases.—Figure 4 shows the performance

of RFPE when the initial quantum state is an eigenstate
and is discarded after each experiment. Performing phase
estimation in this way minimizes the number of experi-
ments, but can be expensive if initial preparation is costly.
In such cases, it makes sense to follow the standard
prescription for phase estimation by keeping the quantum
state until it is clear that the initial eigenstate has been
depolarized. These depolarizations can cause RFPE to
become confused because the new data that come in are
only consistent with hypotheses that have been ruled out.
We address this by performing inexpensive experiments to
assess whether the state has depolarized and then restart the
learning process. Restarting is also valuable when T2 ¼ 0
to recover from inference errors (see the Supplemental
Material [28]).
The following procedure addresses this issue: (1) After

each update with probability e−M=T2 perform an experiment
with θ ¼ μ and M ¼ τ=σ for τ < 1. (2) If result ¼ 1 then
prepare initial state and reset σ.
These steps perform a one–sided test of whether the prior

distribution is consistent with the current state. If the prior
probability distribution is correct, then the probability of
measuring 0 is

1

σ
ffiffiffiffiffiffi
2π

p
Z

∞

−∞
cos2

�ðμ − xÞτ
2σ

�
e−½ðμ−xÞ2=2σ2�dx

¼ 1þ e−τ
2=2

2
: ð7Þ

If τ ¼ 0.1 then this probability is approximately 0.998 and
hence measuring 1 implies that the hypothesis that the prior
is correct can be rejected at p ≤ 0.002. A Bayesian analysis
of our reset rule is given in the Supplemental Material [28].
The test process also permits the eigenvalue of an

eigenstate in a decohering system to be estimated in real
time. Figure 5 shows that the restarting algorithm can
rapidly detect a transition from the instantaneous eigenstate
and infer the system’s new eigenphase.
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FIG. 4. Median errors for phase estimation in decohering
systems for experiments constrained to use M ≤ T2. We take
m ¼ 12 000 and use 1000 random samples to generate the data
above. The initial state is taken to be a randomly chosen
eigenstate in all cases.
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Conclusion.—Our efficient methods for Bayesian phase
estimation represent an important step forward for iterative
phase estimation (IPE). They provide a new platform upon
which online inferences can be performed that scale
optimally over thousands of experiments and can therefore
be used to make tracking time-dependent properties of the
system practical.
We also observe that our methods inherit the robustness to

experimental imperfections that Bayesian approaches enjoy.
This is especially critical as current experiments push past
the classical regime and IPE becomes increasingly imprac-
tical in lieu of fault tolerance. In particular, the ability of our
algorithms to learn in the presence of decoherence provides
an efficient alternative to the variational eigensolvers used in
present day experiments [38–40].
Looking at the problem of phase estimation more

generally, it is clear that approximate Bayesian inference
provides a powerful and flexible platform to perform phase
estimation within. It is our firm belief that by combining
such tools with clever experimental design, further
improvements can be seen not only in phase estimation
but also quantum metrology in general.

We thank B. Terhal, K. Rudinger, and D. Wecker for
useful comments [28].
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