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The question whether a given quantum state is a ground or thermal state of a few-body Hamiltonian can
be used to characterize the complexity of the state and is important for possible experimental
implementations. We provide methods to characterize the states generated by two- and, more generally,
k-body Hamiltonians as well as the convex hull of these sets. This leads to new insights into the question of
which states are uniquely determined by their marginals and to a generalization of the concept of
entanglement. Finally, certification methods for quantum simulation can be derived.
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Introduction.—Interactions in quantum mechanics are
described by Hamilton operators. The study of their
properties, such as their symmetries, eigenvalues, and
ground states, is central for several fields of physics.
Physically relevant Hamiltonians, however, are often
restricted to few-body interactions, as the relevant inter-
action mechanisms are local. But the characterization of
generic few-body Hamiltonians is not well explored, since
in most cases one starts with a given Hamiltonian and tries
to find out its properties.
In quantum information processing, ground and thermal

states of local Hamiltonians are of interest for several
reasons: First, if a desired state is the ground or thermal
state of a sufficiently local Hamiltonian, it might be
experimentally prepared by engineering the required inter-
actions and cooling down or letting thermalize the physical
system [1]. For example, one may try to prepare a cluster
state, the resource for measurement-based quantum com-
putation, as a ground state of a local Hamiltonian [2].
Second, on a more theoretical side, ground states of k-body
Hamiltonians are completely characterized by their reduced
k-body density matrices. The question of which states are
uniquely determined by their marginals has been repeatedly
studied and is a variation of the representability problem,
which asks whether given marginals can be represented by
a global state [3]. It has turned out that many pure states
have the property to be uniquely determined by a small set
of their marginals [4,5], and, for practical purposes, it is
relevant that often entanglement or nonlocality can be
inferred by considering the marginals only [6].
In this Letter we present a general approach to character-

ize ground and thermal states of few-body Hamiltonians.
We use the formalism of exponential families, a concept
first introduced for classical probability distributions
by Amari [7] and extended to the quantum setting in
Refs. [8–11]. This offers a systematic characterization of
the complexity of quantum states in a conceptionally
pleasing way. We derive two methods that can be used
to compute various distances to thermal states of k-body

Hamiltonians: The first method is general and uses semi-
definite programming, while the second method is espe-
cially tailored to cluster and, more generally, graph states.
In previous approaches it was only shown that some special
states are far away from the eigenstates of local
Hamiltonians [12], but no general method for estimating
the distance is known.
Our approach leads to new insights in various directions.

First, it has been shown that cluster and graph states can, in
general, not be exact ground states of two-body
Hamiltonians [2], but it was unclear whether they still
can be approximated sufficiently well. Our method shows
that this is not the case and allows us to bound the distance
to ground and thermal states. Second, as shown in Ref. [4],
almost all pure states of three qubits are completely
determined by their two-party reduced density matrices.
As we prove, for N ≥ 5 qubits or four qutrits this is not the
case, but we present some evidence that the fact might still
be true for four qubits. Finally, our method results in
witnesses, which can be used in a quantum simulation
experiment to certify that a three-body Hamiltonian or a
Hamiltonian having long-range interactions was generated.
The setting.—A two-local (or two-body) Hamiltonian of a

system consisting of N spin-1=2 particles can be written as

H ¼
XN
i;j¼1

X
αβ

λðijÞαβ σðiÞα ⊗ σðjÞβ ; ð1Þ

where σðiÞα denotes a Paulimatrix f1; σx; σy; σzg acting on the
ith particle, etc.Note that the identitymatrix is included, soH
can also contain single particle terms.We denote the set of all
possible two-local Hamiltonians byH2 and in an analogous
manner the set of k-local Hamiltonians by Hk. An example
for a two-local Hamiltonian is the Heisenberg model having
nearest-neighbor interactions. However, our approach gen-
erally ignores any geometrical arrangement of the particles.
Finally, for an arbitrary multiqubit operator A we call the
number of qubitswhere it acts onnontrivially theweightofA.
In practice, this can bedetermined byexpandingA in terms of
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tensor products of Pauli operators and looking for the largest
nontrivial product.
The set we aim to characterize is the so-called expo-

nential family Q2, consisting of thermal states of two-local
Hamiltonians

Q2 ¼
�
τjτ ¼ e−βH

tr½e−βH� ; H ∈ H2

�
: ð2Þ

Ground states can be reached in the limit of infinite inverse
temperature β. For any k, the exponential families Qk can
be defined in a similar fashion. The set Q1 consists of
mixed product states, the set QN of the full state space.
The exponential families form the hierarchy
Q1⊆Q2⊆ � � �⊆QN , and a suitable βH can be seen as a
way of parametrizing a specific density matrix
τ ¼ e−βH=tr½e−βH�. The question arises, what states are
in Qk? And for those which are not, what is their best
approximation by states in Qk?
It turns out to be fruitful to consider the convex hull

convðQ2Þ ¼
�X

i

piτijτi ∈ Q2;
X
i

pi ¼ 1; pi ≥ 0

�
;

and ask whether a state is in this convex hull or not (see also
Fig. 1). The convex hull has a clear physical interpretation
as it contains all states that can be generated by preparing
thermal states of two-body Hamiltonians stochastically
with probabilities pi. In this way, taking the convex hull
can be seen as a natural extension of the concept of
entanglement: The thermal states of one-body
Hamiltonians are just the mixed product states and their
convex hull are the fully separable states ofN particles [13].
In this framework, the result of Linden et al. [4] can be
rephrased as stating that all three-qubit states are in the
closure of the convex hull convðQ2Þ, since nearly all pure
states are ground states of two-body Hamiltonians.

Finally, the characterization of the convex hull leads to
the concept of witnesses that can be used for the exper-
imental detection of correlations [13]. Witnesses are
observables that have positive expectation values for states
inside a given convex set. Consequently, the observation of
a negative expectation value proves that a state is outside of
the set. We will see below that such witnesses can be used
to certify quantum simulation.
Quantum exponential families.—We recall some results

on the characterization of quantum exponential families
[10,11]. Given a state ϱ, consider its distance from the
exponential family Q2 in terms of the relative entropy (or
divergence) SðϱjjτÞ ¼ tr½ϱ( logðϱÞ − logðτÞ)�. As the clos-
est state to ϱ in Q2, one obtains the so-called information
projection ~ϱ2. It has been shown that the following three
characterizations for the information projection ~ϱ2 ∈ Q2

are equivalent [10]: (a) ~ϱ2 is the unique minimizer of the
relative entropy of ϱ from the set Q2,

~ϱ2 ¼ argminτ∈Q2
SðϱjjτÞ: ð3Þ

(b) Of the set of states having the same two-body reduced
density matrices (2-RDMs) as ϱ, denoted byM2ðϱÞ, ~ϱ2 has
a maximal von Neumann entropy

~ϱ2 ¼ argmaxμ∈M2ðϱÞSðμÞ: ð4Þ

(c) Finally, ~ϱ2 is the unique intersection of Q2 and M2ðϱÞ.
From (b) it follows that if for a state σ another state ϱ of
higher entropy but having the same 2-RDMs can be found,
then σ must lie outside of Q2. A further discussion can be
found in the Supplemental Material, Appendix A [14].
States not in Q2 are said to have irreducible correlations

of order 3 or higher, because they contain information
which is not already present in their 2-RDMs, if one wishes
to reconstruct the global state from its marginals according
to Jaynes’ maximum entropy principle [15]. This is
conceptionally nice, but also has certain drawbacks.
Importantly, the irreducible correlation as quantified by
the relative entropy is not continuous, as shown in
Ref. [16]. In addition, the relative entropy is difficult to
estimate experimentally without doing state
reconstruction, so other distances such as the fidelity
are preferable. These properties make the relative entropy
somewhat problematic and give further reasons why we
consider the convex hull.
Characterization via semidefinite programming.—Our

first method to estimate the distance of a given state to the
convex hull ofQ2 relies on semidefinite programming [17].
This optimization method is insofar useful, as semidefinite
programs are efficiently solvable and their solutions can be
certified to be optimal. Moreover, ready-to-use packages
for their implementation are available.
As a first step we formulate a semidefinite program to

test if a given pure jψi state is outside of Q2. From the

FIG. 1. Schematic view of the state space, the exponential
families Q1 and Q2, and their convex hulls. While the whole
space of mixed states is convex, the exponential families are non-
convex low-dimensional manifolds. The convex hull of Q1 are
the fully separable states and our approach allows us to character-
ize the convex hull for arbitrary Qk.
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characterization in Eq. (4) it follows that it suffices to find a
different state ϱ having the same 2-RDMs as jψi. If ϱ is
mixed, its entropy is higher than that of jψi, meaning that
jψi cannot be its own information projection and therefore
lies outside of Q2. If ϱ is pure, consider the convex
combination ðjψihψ j þ ϱÞ=2, again having a higher
entropy. To simplify notation we define for an arbitrary
N-qubit operator X the operator RkðXÞ as the projection of
X onto those operators, which can be decomposed into
terms having at most weight k. In practice, RkðXÞ can be
computed by expanding X in Pauli matrices, and removing
all terms of weight larger than k. Note that RkðϱÞ may have
negative eigenvalues.
The following semidefinite program finds a state with the

same k-body marginals as a given state jψi:

min
ϱ
∶ tr½ϱjψihψ j�

subject to RkðϱÞ ¼ Rkðjψihψ jÞ;
tr½ϱ� ¼ 1; ϱ ¼ ϱ†; ϱ ≥ δ1: ð5Þ

While this program can be run with δ ¼ 0, it is useful to
choose δ to be strictly positive. Then, a strictly positive ϱ
may be found, which is guaranteed to be distant from the
state space boundary. Consequently, if jψi is disturbed, one
can still expect to find a state with the same reduced density
matrices in the vicinity of ϱ. This can be used to prove
that the distance to Q2 is finite, and will allow us to
construct witnesses for proving irreducible correlations in
jψi. We make this rigorous in the following observation.
For that, let BðjψiÞ be the ball in trace distance Dtrðμ; ηÞ ¼
1
2
trðjμ − ηjÞ centered at jψi.
Observation 1.—Consider a pure state jψi and a mixed

state ϱ ≥ δ1 with RkðϱÞ ¼ Rkðjψihψ jÞ. Then, for any state
σ in the ball BδðjψiÞ a valid state ~ϱ in BδðϱÞ can be found,
such that their k-party reduced density matrices match.
Moreover, the entropy of ~ϱ is larger than or equal to the
entropy of σ. This implies that the ball BδðjψiÞ contains no
thermal states of k-body Hamiltonians.
The proof is given in the Supplemental Material,

Appendix B [14].
In the observation, we considered the trace distance, but

a ball in fidelity instead of trace distance can be obtained:
Consider a state σ near jψi, having the fidelity
Fðσ;ψÞ ¼ α ≥ 1 − δ2, where Fðϱ;ψÞ ¼ tr½ϱjψihψ j� ¼
hψ jϱjψi. Then from the Fuchs–Van de Graaf inequality
follows Dtrðσ; jψihψ jÞ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðσ;ψÞp

≤ δ, and observa-
tion 1 is applicable [18].
The usage of the fidelity as a distance measure has a clear

advantage from the experimental point of view, as it allows
the construction of witnesses for multiparticle correlations.
Indeed, the observable

W ¼ ð1 − δ2Þ1 − jψihψ j ð6Þ

has a positive expectation value on all states inQk and, due
to the linearity of the fidelity, also on all states within the
convex hull convðQkÞ. So, a negative expectation value
signals the presence of k-body correlations. Witnesses for
entanglement have already found widespread applications
in experiments [13].
Equipped with a method to test whether a pure state is in

convðQ2Þ or not we are able to tackle the question whether
the results of Ref. [4] can be generalized. Recall that in this
reference it was shown that nearly all pure states of three
qubits are uniquely determined (among all mixed states) by
their reduced two-body density matrices. This means that
they are ground states of two-body Hamiltonians.
Consequently, the closure of the convex hull convðQ2Þ
contains all pure states and therefore also all mixed states,
and the semidefinite program in Eq. (5) will not be feasible
for δ strictly positive. The question is whether this result
holds for more qubits too.
Concerning pure five-qubit states, we numerically found

a fraction of 40% to be outside of convðQ2Þ. In the case of
pure four-qubit states, however, no tested random state has
been found to lie outside of convðQ2Þ. Given the fact that
the test works well in the cases of five and six qubits, this
leads us to conjecture that nearly all pure four qubit states
are in convðQ2Þ, and hence also in Q2. This would imply
that a similar result as the one obtained by Ref. [4] holds in
the case of four qubits: almost every pure state of four
qubits is completely determined by its two-particle reduced
density matrix. More details are given in the Supplemental
Material, Appendix C [14].
Characterization via the graph state formalism.—The

family of graph states includes cluster states and GHZ
states and has turned out to be important for measure-
ment-based quantum computation and quantum error
correction [19]. Because of their importance, the question
whether graph states can be prepared as ground states of
two-body Hamiltonians has been discussed before [2].
Generally, graph states have shown to not be obtainable
as unique nondegenerate ground states of two-local
Hamiltonians. Further, any ground state of a k-local
Hamiltonian H can only be ϵ-close to a graph state
jGi with mðjGiÞ > k at the cost of H having an ϵ-small
energy gap relative to the total energy in the system [2].
Here, mðjGiÞ is the minimal weight of any element in the
stabilizer S of state jGi (see also below). But as pointed
out in Ref. [2], this does not imply that graph states
cannot be approximated in general, as ϵ is a relative
gap only.
Let us introduce some facts about graph states. A graph

consists of vertices and edges (see Fig. 2). This defines the
generators

ga ¼ σðaÞx

Y
b∈NðaÞ

σðbÞz ; ð7Þ
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where the product of the σðbÞz runs over all vertices
connected to vertex a, called neighborhood NðaÞ. The
graph state jGi can be defined as the unique eigenstate of
all the ga, that is jGi ¼ gajGi. This can be rewritten with
the help of the stabilizer. The stabilizer S is the commu-
tative group consisting of all possible 2N products of ga,
that is, S ¼ fsi ¼

Q
a∈Igag. Then, the graph state can be

written as jGihGj ¼ 2−N
P

si∈Ssi [19]. This formula allows
us to determine the reduced density matrices of graph states
easily, since one only has to look at the products of the
generators ga.
For instance, all stabilizer elements of the five-qubit ring

cluster state jC5i have at least weight three, and, therefore,
the 2-RDMs of jC5i are maximally mixed. By choosing
δ ¼ 2−5 in observation 1, the maximum overlap to
convðQ2Þ is bounded by Fτ∈Q2

ðjC5i; τÞ ≤ 1 − δ2≈
0.999 02. Note that Ref. [20] has demonstrated a slightly
better bound FðjC5i; τÞ ≤ 1=32þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

899=960
p

≈ 0.998 96.
However, both bounds are by far not reachable in current
experiments. In fact, one can do significantly better. In the
following, we will formulate a stricter bound by first
considering Q2 and the ring cluster state jCNi for an
arbitrary number of qubits N ≥ 5, but the result is general.
Observation 2.—The maximum overlap between the

N-qubit ring cluster state jCNi and an N-qubit state τ ∈
Q2 is bounded by

sup
τ∈Q2

hCN jτjCNi ≤
D − 1

D
; ð8Þ

where D ¼ 2N is the dimension of the system. More
generally, for an arbitrary pure state with maximally mixed
reduced k-party states in a d⊗N system, the overlap withQk
is bounded by ðdN − 1Þ=dN.
The proof is given in the Supplemental Material,

Appendix D [14].
In the case of five qubits, Fτ∈Q2

ðjC5i; τÞ ≤ 31=
32 ≈ 0.968 75, which improves the bound on the distance
to convðQ2Þ by more than 2 orders of magnitude [21].
From observation 2, we can construct the witness

W ¼ D − 1

D
1 − jCNihCN j; ð9Þ

which detects states outside of convðQ2Þ. In a similar
fashion, any state having the maximally mixed state as k-
particle RDMs can be used to construct a witness for
convðQkÞ. First, there is a four-qutrit state with maximally
mixed 2-RDMs [22], which can be used to derive a witness
for convðQ2Þ. The highly entangled six-qubit state jM6i
(see the graph in Fig. 2) has maximally mixed 3-RDMs, so
W ¼ 63

64
1 − jM6ihM6j is a witness to exclude thermal states

of three-body Hamiltonians. Third, consider a 5 × 5 2D
cluster state with periodic boundary conditions (see Fig. 2).
This state has mðjC5×5iÞ ¼ 5 [2], and can, therefore, serve
as a witness W ¼ α1 − jC5×5ihC5×5j for convðQ4Þ, where
α ¼ ð225 − 1Þ=225. It should be noted that this witness can
also be used for convðQ2Þ, for which the value α might be
improved [23]. Finally, the minimal distanceDk in terms of
the relative entropy from Qk can be lower bounded by the
fidelity distance from its convex hull convðQkÞ, see the
Supplemental Material, Appendix D for details [14].
Quantum simulation as an application.—The aim of

quantum simulation is to simulate a physical system of
interest by another well-controllable one. Naturally, it is
crucial to ascertain that the interactions really perform as
intended. Different proposals have recently come forward
to engineer sizable three-body interactions in systems of
cold polar molecules [24], trapped ions [25], ultracold
atoms in triangular lattices [26], Rydberg atoms [27], and
circuit QED systems [28]. Using the ring cluster state
witness W ¼ α1 − jCNihCN j derived above, it is possible
to certify that three- or higher-body interactions have been
engineered. This is done by letting the system under control
thermalize. If then hWi < 0 is measured, one has certified
that interactions of weight three or higher are present. At
least five qubits are generally required for this, but by
further restricting the interaction structure, four qubits can
be enough for demonstration purposes. This can already be
done with a fidelity of 93.75%, which is within reach of
current technologies. Further details can be found in the
Supplemental Material, Appendix E [14].
As an outlook, one may try to extend this idea of

interaction certification to the unitary time evolution under
local Hamiltonians. For instance, digital quantum simu-
lation can efficiently approximate the time evolution of a
time-independent local Hamiltonian and in Ref. [29] an
effective 6-particle interaction has been engineered by
applying a stroboscopic sequence of universal quantum
gates. The process fidelity was quantified using quantum
process tomography; however, it would be of interest to
prove that the same time evolution cannot be generated by
5-particle interactions only.
Conclusion.—We have provided methods to characterize

thermal and ground states of few-body Hamiltonians. Our
results can be used to test experimentally whether three-

FIG. 2. Examples of graphs discussed in this Letter. Left: The
five-qubit ring-cluster graph. The corresponding ring-cluster state
jC5i has a finite distance to the exponential family Q2. Middle:
The maximally entangled six-qubit jM6i state is not in the convex
hull of Q3. Right: The 2D periodic 5 × 5 cluster state jC5×5i is
not in convðQ4Þ.

PRL 117, 010403 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 JULY 2016

010403-4



body or higher-order interactions are present. For future
work, it would be desirable to characterize the entangle-
ment properties of Q2, e.g., to determine whether the
entanglement in these states is bounded, or whether they
can be simulated classically in an efficient manner.
Furthermore, it is of significant experimental relevance
to develop schemes to certify that a unitary time evolution
was generated by a k-body Hamiltonian.
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