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The susceptible-infected-susceptible (SIS) model is a canonical model for emerging disease outbreaks.
Such outbreaks are naturally modeled as taking place on networks. A theoretical challenge in network
epidemiology is the dynamic correlations coming from that if one node is infected, then its neighbors are
likely to be infected. By combining two theoretical approaches—the heterogeneous mean-field theory and
the effective degree method—we are able to include these correlations in an analytical solution of the SIS
model. We derive accurate expressions for the average prevalence (fraction of infected) and epidemic
threshold. We also discuss how to generalize the approach to a larger class of stochastic population models.
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The susceptible-infected-susceptible (SIS) model is a
fundamental model of outbreaks of diseases (like influenza,
chlamydia, gonhorrea, etc.) that does not give immunity upon
recovery. Diseases spread over networks of people and the
structure of these networks affect spreading [1]; thus, it makes
sense to put the SIS model on networks. The SIS model
divides the population into two classes—susceptible (S) and
infected (I). Links between S and I transmit the disease (i.e.,
make the susceptible infected) with a rate r. Infected
individuals become susceptible again with a rate g. One
can reduce these two parameters to one—λ ¼ r=g—the rate
of new infections per SI link per recovery, or the effective
infection rate. In the thermodynamic limitN → ∞, there can
be a threshold, or phase-transition phenomenon when tuning
λ [2]. For λ less than a critical λc the disease dies out
spontaneously. If λ > λc the disease will live forever—i.e.,
it has reached an endemic state where the prevalence ρ
(fraction of infected nodes) is nonzero. Also, for finite
networks, there is effectively an endemic state as the expected
extinction time, even for small networks, grows extremely
fast beyondλc [3]. The twomaindirections in the literature are
to study extinction times in finite, homogeneous networks [4],
or how the threshold depends on the network structure [5,6].
This work belongs to the latter class.
For the SIS model in a well-mixed population, the thresh-

old happens at λc ¼ 1 [7]. For the SISmodel in homogeneous
networks, such as the Erdős-Rényi random networks and
random regular graphs, a simple approximative (mean-field)
analysis gives the thresholdλc ¼ 1=hki [5]. For theSISmodel
in scale-free networks [8]—where the degree distribution (the
probability that a random node is connected to k other nodes)
follows PðkÞ ∼ k−γ—heterogeneous mean-field theory pre-
dicts that the epidemic threshold of the SIS model is equal to
that of the susceptible-infected-recovered (SIR) model
λHMF;SIS
c ¼ λHMF;SIR

c ¼ hki=hk2i [5,6,9,10]. In other words,

the threshold seems to be zero for γ ≤ 3, and finite for γ > 3
[11]. The heterogeneous mean-field theory is a degree-based
mean-field theory, which sorts the nodes into different classes
in terms of the magnitude of their degrees, but all the other
aspects are considered totally random (for instance, who
connects whom). In other words, the heterogeneous mean-
field theory neglects correlation, both from the disease
dynamics (a node is more likely infected if its neighbors
are infected) and the network structure. Effectively, the
heterogeneous mean-field theory applies to a situation where
the network is constantly rewired (or annealed) at a time scale
faster than the disease dynamics. (See the Supplemental
Material [12] for more details on the SIS and SIR models on
annealed networks).
Moving beyond the heterogeneous mean-field

assumption that the network is rapidly changing, we have
to deal with dynamic correlations. In the heterogeneous
mean field, the probability to be infected is ρ for two nodes
of the same degree, but because of dynamic correlations a
node is more likely to be infected if many of its neighbors
are infected. This fact—the probability of having an already
infected neighbor is larger than in the mean-field approxi-
mation—will reduce the effective infection rate, and thus
the speed and extent of the disease propagation. One
possible remedy is to consider an individual-based
mean-field approximation by taking into account the full
network structure correlation (still ignoring the dynamic
correlations). This is also called the quenched mean-field
theory [17,18]. The quenched mean-field theory gives the
epidemic threshold λQMF;SIS

c ¼ 1=Λ1 [17], where Λ1 is the
largest eigenvalue of the adjacency matrix of the underlying
network. According to Ref. [19], for scale-free networks,

1=Λ1 ∼
�
1=

ffiffiffiffiffiffiffiffiffi
kmax

p
; γ > 5=2;

hki=hk2i; 2 < γ < 5=2;
ð1Þ
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where kmax is the maximum degree in the network. Both the
heterogeneous mean-field and quenched mean-field meth-
ods imply that the epidemic threshold in scale-free net-
works vanishes in the thermodynamic limit, but remains
finite for networks of finite sizes. Some numerical studies
suggest that the quenched mean-field is qualitatively
correct in scale-free networks [20,21], but others point at
deviations from the threshold value [10].
There are studies that do take dynamic correlations into

account. This, so called, effective degree approach [22,23] is
a higher order degree-based mean-field theory, explicitly
considering the dynamic correlation between directly con-
nected neighbors. It does indeed provides a much more
accurate prediction of the epidemic threshold for the SIR
model in uncorrelated networks, λED;SIRc ¼ ½hki=ðhk2i −
2hkiÞ� [22]. This works by mapping the SIR process to a
bond-percolation problem [11,24], but has not yet been
applied to the SIS model. Boguñá et al. [21] take dynamic
correlation between distant neighbors into account within
the framework of quenched mean-field theory. They
replaced the original SIS dynamics by a modified process
valid over coarse-grained times and argued that dynamic
correlation changes the dynamics near the threshold. Based
on a spectral approach, which takes into account the other
eigenvectors of the adjacency matrix than Λ1, Goltsev et al.
[25] showed that in scale-free networks with γ > 5=2, the
principal eigenvector is localized. This means that above
λQMF
c the epidemic is alive, but the activity is concentrated to
the hubs and their immediate neighbors. This leads to the
conclusion that the true threshold for the endemic state
would have a finite value for scale-free networks with γ > 3
[21]. Ferreira et al. [26] studied the relationship between the
hub lifespan and the hub infection time to discern the nature
of the threshold in general epidemic models on scale-free
networks. References [27,28] present yet further refine-
ments of the quenched mean-field theory. Finally, in this
literature review, we also want to mention many other
approaches to understand SIS or SIR processes on networks,
such as the pair-approximation method [29,30], probability
generating function techniques [31,32], R0-based modifi-
cation [33], percolation theory [31,34], and branching
process [35], etc. However, all these methods depend on
large sets of coupled ordinary differential equations, and are
unable to provide explicit analytical solutions for the
prevalence, in particular, for large-scale networks [11].
Our current understanding of the SIS dynamics on

heterogeneous networks is far from complete. In this
Letter, we combine the idea of the heterogeneous mean-
field theory with the effective degree approach to study the
effect of dynamic correlation present in static networks on
the SIS epidemic dynamics. The underlying static networks
can have arbitrary degree distributions. However, we focus
on networks without degree-degree correlations or other
(e.g., mesoscopic) structures. Our method gives a closed-
form analytical solution for the prevalence ρ, from which
we immediately can obtain the epidemic threshold by

solving the equation ρ ¼ 0. We further show that our
method matches numerical simulations better than the
above-mentioned theory.
To begin, we define pk and qk, respectively, as the

probabilities of reaching an arbitrary infected individual by
following a randomly chosen edge from susceptible and
infected individuals of degree k. In the framework of
heterogeneous mean-field theory, where the underlying
network is treated as annealed, the value of qk is always
equal to that of pk [21]. For the earlier mentioned reasons,
the dynamic correlations mean that

qk > pk: ð2Þ
In the spirit of the heterogeneous mean field [5], we can
write down the master equation for those infected individ-
uals of degree class k,

dIkðtÞ
dt

¼ −IkðtÞgþ rkSkðtÞpkðtÞ; ð3Þ

where SkðtÞ and IkðtÞ are the number of susceptible and
infected individualswith degree k at time t, respectively. The
first term represents the spontaneous recovery and the
second one the newly emerged infection in class k due to
the interactionwith other classes. In the steady state,we have

pk ¼
g
kr

Ik
Sk

: ð4Þ

In annealed networks, one assumes pk ¼ qk ¼ ½1=ðhkiNÞ�×P
kkIk, where N is the total population size, to continue the

theoretical derivation. As mentioned above, this hypothesis
is not applicable for the SISmodel in static networks. Inwhat
follows, we circumvent this problem following the effective
degree approach. Thismeans that we divide the network into
classes representing both the state of an individual and its
neighbors [36,37]. Let Sk;jðtÞ ½Ik;jðtÞ� be the density of k
degree nodes that are susceptible (infected) at time t,
connected to j infected neighbors. Then, Sk;jðtÞ and
Ik;jðtÞ can be written as

Sk;jðtÞ ¼ SkðtÞ½1 − pkðtÞ�k−j½pkðtÞ�j
�
k
j

�
; ð5aÞ

Ik;jðtÞ ¼ IkðtÞ½1 − qkðtÞ�k−j½qkðtÞ�j
�
k
j

�
; ð5bÞ

where SkðtÞ ¼
P

jSk;jðtÞ and IkðtÞ ¼
P

jIk;jðtÞ. Summing
over all possible events, we obtain the total recovery
rate aðtÞ ¼ P

k

P
j Ik;jðtÞg and the population-level trans-

mission rate bðtÞ ¼ P
k

P
j Sk;jðtÞjr. When the system is in

its steady state, the total recovery rate must be equal to the
total transmission rate, satisfying the detailed balance
conditions a ¼ b and hΔai ¼ hΔbi, where Δa and Δb
are the changing rate of a and b in the time interval dt (where
only one event occurs). All possible values of these two
quantities in a static network are summarized inTable I.With
these preliminary results, we have
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X
k

X
j

Sk;jj2r ¼
X
k

X
j

Ik;jjg: ð6Þ

Note that the formula of Eq. (6) is exact for the steady state in
any static networks. Nevertheless, we want to point out that
they are not applicable to irreversible processes such as the
SIR model.
Using the condition that the total number of infectious

neighbors of all susceptible individuals equals the total
number of susceptible neighbors of all infectious indivi-
duals [38], we get the relationship

P
k

P
j Ik;jjg ¼

g
P

kIk½k − g=r�. Combining this with Eqs. (4) and (6), gives

g
X
k

Ik

�
ðk − 1Þpk þ 1 − kþ g

r

�
¼ 0: ð7Þ

Notice that only infected individuals can determine the
birth and death of susceptible individuals, but not vice
versa. Any new infection or recovery event will mainly
change the difference among various qk (since the prob-
ability of finding connected infected pair with certain
degrees will increase or decrease definitely due to the
event). But it does not provide any valuable hints about how
various pk will differ from each other (albeit their values
would change owing to the newly emerged or disappeared
infected individual) for degree-uncorrelated random net-
works. In light of the maximum entropy principle [39], we
assume all pk change with the same magnitude such that
they always satisfy the following approximative relations

p1 ≃ p2 ≃ � � �≃ pkmax
¼ p: ð8Þ

That is to say, our method is mainly concerned about the
dynamic correlations present in connected infected pairs,
but neglects higher-order dynamic correlations in suscep-
tible-susceptible or susceptible-infected pairs. We have
verified that Eqs. (2) and (8) capture the most important
parts of the dynamic correlations, neglecting only minor
ones [12]. Substituting Eq. (8) into Eqs. (4) and (7), we
obtain the iterative equation

Ik ¼
λkp

1þ λkp
Nk; ð9Þ

where p itself is a function of Ik as

p ¼ 1 −
I

λ
P

kIkðk − 1Þ : ð10Þ

Combining with Eqs. (9) and (10), we can find the solution
of p, which is now a function of λ, satisfying the self-
consistency equation

ð1 − pÞλ
X
k

ðk − 1Þ λkp
1þ λkp

NPðkÞ

−
X
k

λkp
1þ λkp

NPðkÞ ¼ 0: ð11Þ

Now we are able to calculate the prevalence ρ in the
steady state as follows: (i) Calculate p from Eq. (11);
(ii) Substitute the value of p into Eq. (9) to solve Ik;
(iii) Obtain the prevalence ρ ¼ ð1=NÞPkIk. The results are
summarized in Fig. 1, from which we can see that the
estimations obtained by our approach match those from
stochastic simulations quite well [12].
A nonzero stationary prevalence is obtained when the p

has a nontrivial solution in the interval 0 < p ≤ 1. We
denote the left-hand side of Eq. (11) by fðpÞ. It is easy to
see that p ¼ 0 is a trivial solution of Eq. (11). Furthermore,
note that fðpÞ is always negative for p ¼ 1. Hence, the
condition that p has a meaningful solution in the interval (0,
1] reads as

d
dp

fðpÞjp¼0 ≥ 0: ð12Þ

The value of λ satisfying the equality of the above
inequality determines the epidemic threshold λc, whose
value is given, for uncorrelated random networks, by

λc ¼
hki

hk2i − hki : ð13Þ

The epidemic threshold of the SIS model obtained by our
method is larger than the one predicted by the hetero-
geneous mean-field theory [5,6,9,10], and is smaller than
the threshold of the SIR model by the effective degree
approach [11,22]. Equation (13) implies that the epidemic
threshold of the SIS epidemic process is zero for scale-free
networks with γ < 3, but finite if γ > 3. This is consistent
with the conclusions of previous work using other methods
[25,27]. In Fig. 2, we plot the epidemic thresholds against
network size and show that, in Erdős-Rényi and scale-free

TABLE I. All possible situations in a time interval dt of the SIS
process in a static network.

Situation Probability Δa Δb

Sk;j → Ik;j ½Sk;jðtÞjr�=ðaþ bÞ þg −jrþ rðk − jÞ
Ik;j → Sk;j ½Ik;jðtÞg�=ðaþ bÞ −g þjr − rðk − jÞ
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FIG. 1. The prevalence ρ is plotted as a function of the effective
infection rate λ in static networks. (a) Erdős-Rényi random
networks with average degree 4 and 10, (b) scale-free network
with minimum degree 3 and γ ¼ 4.5, 2.7, and 2.2. Lines are
theoretical estimations of Eqs. (9) and (11), while the points are
simulation results. We use networks with N ¼ 105 nodes and 100
randomly chosen seeds for the infection. Each data point is an
average over at least 100 independent epidemic outbreaks,
performed on at least 10 different network realizations.
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random networks, the accuracy of the epidemic threshold
of our method is better than that of the quenched mean-field
theory, and matches the results from the quasistationary
numerical simulation well [10,21].
To provide further evidence on the efficiency of our pro-

posed approach, we consider the SIS model in a random
regular graph, whose degree distribution is a Kronecker’s
delta function PðkÞ ¼ δkk0 ; i.e., each node in a random
regular graph has a degree of k0 and all the other aspects are
totally random. From Eqs. (4) and (7), we can acquire the
epidemic prevalence

ρ ¼ 1 −
1

1þ k0ðλ − 1
k0−1

Þ ; ð14Þ

where λ ¼ r=g is again the effective infection rate. From
Fig. 3(a), we can see that the results from the analytical
solution of Eq. (14) are in excellent agreement with those
obtained from stochastic simulations in a static random
regular graph.
For the epidemic threshold of the SIS model in static

random regular graphs, the prediction of the quenched
mean-field theory can easily be simplified to λQMF

c ¼ 1=k0
by applying the Perron-Frobenius theorem [10]. By means
of the pair-approximation method, a more accurate esti-
mation of epidemic threshold, λpairc ¼ 1=ðk0 − 1Þ, is
reported [29]. Very recently, by combining the branching
process with the probability generating function, Leventhal
et al. obtained the same threshold 1=ðk0 − 1Þ [35]. For our
case, we just need to set ρ ¼ 0 in Eq. (14), and then the
epidemic threshold can be obtained directly as

λc ¼
1

k0 − 1
; ð15Þ

which is consistent with the findings in Refs. [29,35]. In
Fig. 3(b), we plot the susceptibility against the effective
infection rate λ in static random regular graph with degree
k0 ¼ 5, and show that the susceptibility peak is closer to the
theoretical prediction of Eq. (15) than to the quenched
mean-field result [10], once again validating our method.
Thus, the combination of the heterogeneous mean-field

theory and the effective degree method enables us to, on
one hand, include dynamic correlation and network-
structural correlation (to a necessary extent) to obtain more
accurate predictions (than in previous works) of both the
epidemic prevalence and threshold, and, on the other hand,
obtain explicit expressions for these two quantities.
As a final analysis, we extended our method to the case

of contact process [40]—where infected individuals meet
random neighbors for possible contagion events—on ran-
dom regular graph networks with degree k0. According to
the heterogeneous mean-field theory, we have
p ¼ ðg=rÞðIk0=Sk0Þ. The total recovery and transmission
rates of the whole population are a ¼ P

jIk0;jg and
b ¼ P

jSk0;jjrð1=k0Þ, respectively. Equation (6) will now
be replaced by ðr=k0Þ

P
jSk0;jj

2 ¼ g
P

jIk0;jj. Then, we can
straightforwardly derive the prevalence as

ρ ¼ 1 −
1

1þ λ − k0
k0−1

: ð16Þ

Accordingly, the epidemic threshold of the contact process
on random regular graphs is given by

λc ¼
k0

k0 − 1
: ð17Þ

This epidemic threshold is also consistent with previously
reported results [41,42]; see more details in Ref. [12].
In summary, we have studied the impact of dynamic

correlations, naturally arising in spreading processes on
static networks, on the SIS epidemics. In particular, we take
into account the dynamic correlation from infected pairs, but
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FIG. 3. (a) The epidemic prevalence ρ is plotted as a function of
the effective infection rate λ in static random regular graphs with
degree k0 ¼ 4 and 10. Lines are the theoretical predictions of
Eq. (14), while the scatters are Monte Carlo simulation results.
Other parameters are the same as those in Fig. 1. (b) Susceptibility
χ as a function of the effective infection rate λ for random regular
graphs with different network sizes, where k0 is fixed to 5.
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FIG. 2. (a) and (c) Epidemic threshold λc, obtained by our
method, the quenched mean-field method, and the quasistationary
state method [10,21], versus network size N. (b) and (d) Suscep-
tibility χ as a function of the effective infection rate λ for varying
network size N, where the peak values determine the λpðNÞ in (a)
and (c). Panels (a) and (b) are for Erdős-Rényi random networks
with average degree hki ¼ 4; (c) and (d) are for scale-free
networks with minimum degree 3 and γ ¼ 2.7. The results are
obtained for the epidemic dynamics over at least ten different
network realizations with initial infected seed number I0 ¼ 1.
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ignore those from other node pairs and higher-order network
structure, to derive the master equations governing the state
evolution of the system. By combining the idea of the
heterogeneous mean-field theory with the effective degree
approach, we are able to obtain the epidemic prevalence of
the SIS process in uncorrelated static networkswith arbitrary
degree distributions with a higher precision than other
approaches. It is worth noting that the epidemic threshold
can be calculated as a corollary of the epidemic prevalence.
Specifically, for SIS in scale-free networks, the quenched
mean-field theory predicts that the epidemic threshold is
zero in the thermodynamic limit. By contrast, our theoretical
results show that it remains finite for scale-free networks
with γ > 3, even in the thermodynamic limit.
Our work can be generalized to more general stochastic-

logistic models of density dependent population dynamics
[43]. In such cases, both the infection and recovery rates
usually dependon the ratio I=N in thesemodels (and I is often
interpreted as the population size, while N is the carrying
capacity). Our dynamic correlation approach could be fairly
straightforwardly extended to the general stochastic logistic
model, where Eq. (3) is the first equation to be modified (to
account for the population-dependent death rate).
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