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We present a low energy Hamiltonian generalized to describe how the energy bands of germanene (Ge)
are modified by interaction with a substrate or a capping layer. The parameters that enter the Hamiltonian
are determined from first-principles relativistic calculations for GejMoS2 bilayers and MoS2jGejMoS2
trilayers and are used to determine the topological nature of the system. For the lowest energy, buckled
germanene structure, the gap depends strongly on how germanene is oriented with respect to the MoS2
layer(s). Topologically nontrivial gaps for bilayers and trilayers can be almost as large as for a freestanding
germanene layer.

DOI: 10.1103/PhysRevLett.116.256805

Introduction.—Insulators can be categorized by topologi-
cal invariants that are not continuous; when these have to
change, interesting physics occurs. The first group of these
invariants was found to describe the quantum Hall effect
for electrons confined in strong magnetic fields [1–3]. A new
class of “topological” insulators (TI) was proposed for
systems with time-reversal symmetry where the invariant
can have two values [4,5] and topologically nontrivial
systems are called Z2 TIs [4–9]. In the two dimensional
(2D) graphene (C) originally studied by Kane and Mele
[4,5], spin-orbit coupling (SOC) leads to the opening of a
gap at the Dirac point giving rise to the possibility of
topologically protected spin-polarized edge states. The
intrinsic SOC of carbon is, however, very small, resulting
in gaps of less than 50 μeV (0.6 K) [10]. Two approaches
have been taken to resolve this issue. One is to induce a
larger spin-orbit coupling in graphene by placing it in contact
with layered materials that contain heavy elements with large
intrinsic SOC [11–13]. The other is to begin with a 2D group
IV material with a larger intrinsic SOC [14]. Motivated by
recent success in growing germanene (Ge) on MoS2 [15],
this Letter is concerned with the latter.
The structures and stability of freestanding group IV

layers have already been studied theoretically. Both silicene
(Si) and germanene “buckle” with the two sublattices
moving in opposite directions out of the original plane
but maintaining inversion symmetry [16–18]; stanene (Sn)
forms a different dumbbell structure [19]. The unsupported
layers are predicted to be TIs [19,20]. Experimental efforts
have so far focused on growing silicene [21] and germa-
nene [14] on metallic substrates where the intrinsic trans-
port properties cannot be studied. Eventually these layered
structures must be transferred to or grown on a non-
conducting substrate. It is then essential to know if the
TI character survives the interaction with the substrate.
However, the complexity of these systems has made

calculation of the topological invariant impossible until
now.
We focus on the recently grown GejMoS2 system [15]. A

freestanding, planar germanene layer has a SOC induced
gap of 4 meV. Buckling breaks the reflection symmetry,
mixes the pz with the fs; px; pyg orbitals and increases the
SOC gap to 24 meV [20]. It leads to one Ge sublattice
interacting more strongly with a substrate than the other,
breaking the sublattice symmetry and opening a gap as
large as ∼40 meV without SOC; with SOC included,
Rashba SOC is induced by the breaking of reflection
(and inversion) symmetry. To investigate whether or not
the gapped asymmetric bilayer is a TI, we generalize Kane
and Mele’s model to describe the interaction with a
substrate. We use first-principles calculations to determine
equilibrium geometries, to evaluate the parameters in the
model Hamiltonian from the first-principles electronic
structures and to calculate phase diagrams. We will identify
the orientation of germanene on the substrate as the most
critical factor in determining the size and topological nature
of the band gap. The SOC induced band gap of freestanding
Ge can be almost completely restored in a MoS2jGejMoS2
trilayer where the sandwich structure should stabilize and
protect the Ge layer from the environment.
Phenomenological model: asymmetric bilayer.—We

begin by constructing a low energy Hamiltonian for
graphene interacting (weakly) with a semiconducting sub-
strate (S) by downfolding a tight-binding (TB) Hamiltonian
for the same system. Taking σ and s to be vectors of Pauli
matrices where σ represents the AðBÞ sublattices of
graphene and s represents spin, then the result for an
asymmetric (AS) CjS bilayer is

HAS
K ðqÞ ¼ ℏvFq:σ þ λmσz þ

λR
2
ðσ × sÞz þ λsoσzsz þ λBsz

ð1Þ
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where q is the wave vector relative to the K point,
q ¼ k −K. λm is a “mass” term that describes the breaking
of the sublattice symmetry by the interaction with the
substrate. λR is a Rashba SOC term that results from the
breaking of reflection symmetry in the direction
perpendicular to the germanene layer. λso is Kane and
Mele’s spin-orbit term [4] that contains the intrinsic
“atomic” SOC term of monolayer germanene plus λðindÞso ,
the SOC induced by the substrate. λB corresponds to a
“pseudomagnetic” term which is odd under inversion
symmetry and changes sign at the K0 point and, therefore,
does not break time-reversal symmetry.
The eigenvalues of Eq. (1) at the K point are

ε4ð3Þ ¼ λso � ðλB þ λmÞ; ð2aÞ

ε2ð1Þ ¼ − λso �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλB − λmÞ2 þ λ2R

q
: ð2bÞ

By comparing these eigenvalues and the corresponding
eigenvectors with those calculated from first principles, we
can determine the parameters in Eq. (1) with which the
band structure about the Dirac point can be described. The
projection of wave functions onto specific atoms is not
unique. However, the spin space is complete to very good
accuracy and we use the expectation values for the z
component of spin

hszinK ¼ 1

Ω

Z
Ω

�
jψ↑

nKðrÞj2 − jψ↓
nKðrÞj2

�
d2r ð3Þ

for the four bands at the Dirac point where the integral
should be taken over the supercell with area Ω. Applying
Eq. (3) to first-principles results to be presented below
shows that hsziK ¼ ðs;−s;−1; 1Þ for the four bands at the
Dirac point; here s is a positive number smaller than one.
Solving for the parameters in Eq. (1) results in

λm ¼½ðε4 − ε3Þ þ sðε2 − ε1Þ�=4; ð4aÞ
λR ¼� ðε2 − ε1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
=2; ð4bÞ

λso ¼ ½ðε4 þ ε3Þ − ðε2 þ ε1Þ�=4; ð4cÞ
λB ¼½ðε4 − ε3Þ − sðε2 − ε1Þ�=4: ð4dÞ

When buckling is included, the TB Hamiltonian cannot be
exactly downfolded. However, it does not introduce any
qualitatively new symmetries and Eq. (1) describes the
band dispersion about the Dirac point equally well for
planar CjMoS2 and buckled GejMoS2 as seen in Fig. 1.
First-principles calculations.—We use density func-

tional theory (DFT) to calculate ground state energies
and optimized geometries with a projector augmented
wave (PAW) basis [22,23] as implemented in VASP

[24,25] for GejMoS2 bilayers and MoS2jGejMoS2 trilayers
[26]. We first determine equilibrium geometries for

individual monolayers of Ge and MoS2. For germanene,
both planar (p-Ge) and buckled (b-Ge) structures are
studied. For relaxed b-Ge the sublattice planes are sepa-
rated by c ¼ 0.71 Å. The calculated in-plane lattice con-
stants are 4.05, 4.05, and 3.16 Å for p-Ge, b-Ge, and MoS2,
respectively. We identify lattice vectors in both materials
with an acceptable length mismatch and then rotate the two
lattices through an angle θ to make them coincide; this
defines a “supercell.”
Because of the weak interaction between germanene and

MoS2, a strong preference for a particular alignment of the
two lattices is not expected and this is borne out by the
weak binding energy we find for the relaxed structures. We
accommodate the small residual lattice mismatch in the
MoS2 layer and reoptimize its structure. The Ge and MoS2
layers are allowed to bond in two stages, first only changing
the height of the b-Ge above MoS2 (h-AS structure) and
then without constraint (f-AS structure). For a supercell,

the average buckling is calculated as c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

NGe
c2i =NGe

q
and is given together with other relevant parameters in
Table I for the smallest “reasonable sized” supercell
containing 89 atoms with θ ¼ 24.8° and an acceptable
lattice mismatch of 0.7%. For the h-AS bilayer, the
separation of the bottom germanene plane from the upper
sulphur layer is 3.11 Å.
Results: AS bilayers.—The band structures of p-CjMoS2

and b-GejMoS2 bilayers close to the Dirac point are
compared in Fig. 1. On this small energy scale, the shape
of the bands is quite different because λB is dominant for
graphene while for germanene λso, λm, and λR are much
larger. It is clear from the figure that the phenomenological
model (black lines) describes the low energy first-principles
bands (yellow dots) close to theK point very accurately for
different regimes. For AS b-GejMoS2 the gap decreases
from 5.6 meV for the height optimized structure (h-AS) to
1.9 meV for the fully unconstrained structure (f-AS); see
Table I. λm is seen to increase faster than λso because the
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FIG. 1. Band structures of (a) AS p-CjMoS2 and (b) AS
b-GejMoS2 bilayers close to the K point. The yellow dots are
the results of first-principles calculations, the black lines result
from the model (1) with parameters from Eq. (4).
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average buckling increases slightly from 0.71 to 0.73 Å so

the gap decreases. Another important point is that λðindÞso is

negative. Calculating λðindÞso ¼ λh−ASso − λb−Geso with parame-

ters from Table I yields λðindÞso ¼11.60−12.89¼−1.29meV
and, therefore, interaction with the MoS2 layer reduces the
intrinsic SOC induced gap of germanene. The mass and
Rashba terms are larger than the induced SO term and

both λm and λR increase faster than λðindÞso if the
interaction between germanene and MoS2 increases.
Applying pressure to AS GejMoS2 reduces the gap until
λso ¼ 1

2
(λm þ λB þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλm − λBÞ2 þ λ2R

p
) when it vanishes.

After that, the band gap grows again but the topological
nature of the bands changes. Applying pressure to AS
GejMoS2 will therefore not result in a TI with a larger
band gap.
To determine the Z2 topological invariant ν for the AS

system, we analyze the phase space corresponding to
Eq. (1) with the parameter values from Table I. ν is related
to the integral of the Berry curvature BðqÞ over the effective
Brillouin zone (EBZ) and the Berry potential over its
boundary [36]. In our four band model the full Brillouin
zone is K⊕K0, the EBZ contains only K and, therefore,

ν ¼
�
1þ 1

2π

Z �
B1ðqÞ þ B2ðqÞ

�
dq

�
mod 2; ð5Þ

where BiðqÞ is the Berry curvature of the ith band and unity
in the large parentheses is the contribution of the boundary.
Since it is a topological invariant, ν will not change unless
the band gap vanishes so the TI and NI regions should be
separated by zero-gap lines. According to Ref. [5], the
system will be a TI if the λso term is dominant, whereas if
λm is dominant, the system will be a NI. Any point in the
phase space that can be connected to any of the λso
dominated points without closing the gap is TI.

The general phase space for the Hamiltonian (1) is four
dimensional. Scaling all the parameters will result in
scaling of all the eigenvalues so we only need to study
the surface of a sphere (S3) of radius R (R2 ¼ trH2=4)
in this four dimensional space. Since there are only
three independent eigenvalues, we construct a map
ϕ∶S3 → S2, where X ≡ λ0m ¼ ðλm þ λBÞ=

ffiffiffi
2

p
, Y ¼ λso, Z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½λ2R þ ðλm − λBÞ2�=2
p

and X2 þ Y2 þ Z2 ¼ R2. Adding a
term −Z to symmetrize ϕ, the eigenvalues at K will be
ε4ð3Þ ¼ Y � ffiffiffi

2
p

X and ε2ð1Þ ¼ −Y � ffiffiffi
2

p
Z. The final step is

a conformal map (stereographic projection) sp∶S2 → R2

which results in Fig. 2 [spðϕÞ∶S3 → R2]. As long as
jλBj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2m þ λ2so

p
—our first-principles calculations will

show that this condition is satisfied—the gap remains at
theK point and will be given by this map. The figure shows
that for θ ¼ 24.8° (open red dot), AS b-GejMoS2 is a
topological insulator—just. Relaxing the germanene layer
fully on MoS2 does not change the Z2 invariant though the
reduced gap means that it is less stable (green dot).
For planar germanene (or graphene [37]), the λ param-

eters depend only weakly on the orientation with respect to
the MoS2 substrate [26]. Buckling brings one germanene
sublattice into closer contact with the substrate than the
other and this leads to a nonvanishing mass term λm. When
germanene is displaced parallel to the substrate, λm varies
very weakly [26] but when it is rotated through some angle
θ it varies strongly as shown in Fig. 3 (red dots and curve).

0

0

Bilayer K( )

Trilayer K( )

f-AS
TI NI

m R Z( )

so R Z( )

= 0 = 6

= 3

TI
= 0

NINI

h-AS

1 2 = 12

FIG. 2. Stereographic projection of the phase space of the
Hamiltonian (1). Black lines represent boundaries between
regions where the gap vanishes; phases on either side of the
dashed black lines are the same. The scaling of the λso and λm
variables with R-Z is explained in the text. When germanene is
rotated with respect to MoS2, a trajectory is traced out in
parameter space which is shown in red for a GejMoS2 bilayer
and in blue for a MoS2jGejMoS2 trilayer, where the two MoS2
layers are rotated with respect to one another by θ1 − θ2 ¼ 15°.

TABLE I. Eb is the binding energy in meV per Ge unit cell. The
dimensionless spin parameter s is defined in the text. ΔK is the
gap calculated at the K point in meV. The Hamiltonian param-
eters defined in Eqs. (2) and (4) are given in meV for freestanding
planar and buckled Ge layers, for AS GejMoS2 bilayers and for
IS MoS2jGejMoS2 trilayers. c is the separation between the two
Ge planes in Å and vF ≈ 4 × 105 m=s. For f-AS C, shown for
comparison, the minimum gap is not at K.

Eb s ΔK λm λso λR λB cðÅÞ
p-Ge 4.21 2.11 0.00
b-Ge 25.78 12.89 0.71
h-AS 328 0.83 5.55 7.95 11.60 5.72 −0.56 0.71
f-AS 332 0.87 1.88 10.28 12.04 6.18 −0.62 0.73

f-AS (C) 45 0.91 0.55 −0.08 0.00 0.12 −0.27 0.00

h-IS 671 21.21 10.61 0.71
f-IS 680 22.71 11.36 0.75
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This gives rise to a much more complex dependence of the
gap on the germanene orientation, ΔKðθÞ (yellow triangles
and curve). The angle dependence of the other parameters
is seen to be much smaller. The shaded part of Fig. 3 is TI
and for AS b-GejMoS2 bilayers a sizable gap of more than
15 meV is predicted for angles θ ∼ 20° and θ ∼ 40°. In the
phase diagram Fig. 2, the full angle dependence is shown as
a red line.
MoS2jGejMoS2 trilayers.—In an experiment it will be

necessary to protect the germanene layer. A second,
capping layer of MoS2 will most likely be at some arbitrary
angle θ2 to germanene, itself at an angle θ1 to the substrate
MoS2 layer, making it important to know how the gap will
depend on θ1 and θ2. The large separation of the two MoS2
layers suggests that the direct interaction can be neglected

in our TB derivation, leading to the prediction that the
effect of the two MoS2 layers will be additive in terms of
the parameters in Eq. (1). This is confirmed by explicit
calculation for trilayers with ðθ1;θ2Þ¼ð24.8°;24.8°Þ,
ð24.8°;3.0°Þ, and ð3.0°; 3.0°Þ [26]. The band gap is shown
as a function of θ1 and θ2 in Fig. 4. The NI gap can be in
excess of 60 meV when the λm contributions do not cancel.
The TI gap is largest (> 20 meV) when they cancel exactly
for θ1 � θ2 ¼ nπ=3 for integer n.
Inversion symmetric trilayer.—The term containing λR in

Eq. (1) is odd under inversion. For a MoS2jGejMoS2 trilayer
constructed to have inversion symmetry (IS), the average of
λR over a supercell is zero so this term is absent. The mass
term λm and pseudomagnetic term λB also vanish because
they are odd under inversion and Eq. (1) simplifies to
HIS

KðqÞ ¼ ℏvFq · σ þ λsoσzsz. This equation satisfies the
requirement of Kramers degeneracy that all bands should
be doubly degenerate and predicts that the gap will vanish
only if λso is zero. In this case hszi is not uniquely defined
because degenerate bands have complementary spin textures.
Using the effective Hamiltonian parameters calculated

for the AS b-GejMoS2 bilayer with θ ¼ 24.8°, we can
estimate the band gaps at the K point for the IS

MoS2jGejMoS2 trilayer. For the h-AS system λðindÞso was
found to be −1.29 meV. For the h-IS configuration, we

predict λðISÞso ¼ λðGeÞso þ 2λðindÞso ¼ 12.89 − 2 × 1.29 ¼ 10.31.
An explicit first-principles calculation yields a value of

λðISÞso ¼ 10.61 meV. The close agreement between the
predicted and calculated values indicates that the model
is consistent [26].
For IS systems we can use the formula given by Fu and

Kane [7] to determine the TI ν explicitly from first
principles calculations,

ð−1Þν ¼ Π
4

i¼1
Π
N

m¼1
ξ2mðΓiÞ; ð6Þ

where the first multiplication is over all the time-reversal
fixed points Γi and the second multiplication is over bands
with even band number at the Γi; ξ2m is the parity
eigenvalue of bands 2m − 1 and 2m. For our inversion
symmetric systems, we explicitly calculated the Z2 invari-
ant and found them all to be topological insulators with
band gaps of about 23 meV generated by SO interactions
confirming the phase space assignments.
Conclusion.—We use a comprehensive phenomenologi-

cal model to describe spin-orbit interactions for GejMoS2
bilayers and MoS2jGejMoS2 trilayers. We determine the
parameters entering this model from the eigenvalues and
spin expectation values at theK point. The model describes
the low energy band structure of germanene very accurately
and provides insight into the different interactions involved.
For a GejMoS2 bilayer the band gap of germanene is
dominated by the mass term λm that depends strongly on
how germanene is oriented on the MoS2 substrate. A
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FIG. 3. λ parameters as a function of the angle θ for a fixed
height of germanene above MoS2 that minimizes the energy for
θ ¼ 24.8° for b-GejMoS2. The dashed lines are fits to expressions
with appropriate angle symmetries. Details of the calculations
and the parameters extracted for both planar and buckled
GejMoS2 can be found in Ref. [26].
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FIG. 4. Dependence of the band gap on the angles θ1 and θ2
that a germanene layer makes with two MoS2 layers in a
MoS2jGejMoS2 trilayer with threefold rotation symmetry. The
unshaded region is NI, the shaded region TI.
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maximum nontrivial TI gap of ∼15 meV is predicted for
angles of 20° and 40°. By sandwiching Ge between MoS2
layers, the large 24 (26) meV intrinsic SOC gap reported
[20] (we find) for freestanding germanene can be almost
fully recovered, but requires being able to control the
orientation of germanene with respect to both MoS2 layers.
Exploratory many-body corrections [26] to these single
particle gaps indicate that they may be enhanced by an
order of magnitude, making room temperature observation
possible.
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