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We develop a framework for studying the well-known universal term in the Rényi entropy for an
arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to
gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients:
fbðnÞ for traceless extrinsic curvature deformations and fcðnÞ for Weyl tensor deformations. We provide
the first calculation of the coefficient fbðnÞ in interacting theories by relating it to the stress tensor one-
point function in a deformed hyperboloid background. The latter is then determined by a straightforward
holographic calculation. Our results show that a previous conjecture fbðnÞ ¼ fcðnÞ, motivated by
surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.
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Introduction.—Quantum entanglement has been playing
an increasingly dominant role in understanding complex
systems in a diverse set of areas including condensed matter
physics [1–3], quantum information [4], and quantum
gravity [5–14]. One measure of entanglement is the von
Neumann entropy for the density matrix of a subsystem,
also known as the entanglement entropy.
A different set of measures of entanglement is provided

by the Rényi entropies Sn labeled by an index n, a one-
parameter generalization of the von Neumann entropy [15].
However, they are much easier to experimentally measure
[16–18] and numerically study [19–21] than the von
Neumann entropy. They also contain much richer physical
information about the entanglement structure of a quantum
state, and knowing Rényi entropies for all n allows one to
reconstruct the whole entanglement spectrum, i.e. the set of
eigenvalues of the density matrix. Rényi entropies have
been extensively studied in various contexts including spin
chains [22], tensor networks [23], free field theories [24],
conformal field theories (CFTs) [25,26], and gauge-gravity
duality [27,28]. Furthermore, Rényi entropy at index
n ¼ 1=2 gives the entanglement negativity which is a
measure of the distillable entanglement contained in a
quantum state [29].
In any d-dimensional CFT on a generally curved back-

ground, the Rényi entropy for a spatial region A is ultra-
violet (UV) divergent. Organized by the degree of
divergence, the Rényi entropy may be written as

Sn ¼ γð0Þn
AreaðΣÞ
ϵd−2

þ � � � þ Sunivn þ � � � ; ð1Þ

where Σ≡ ∂A is the entangling surface and ϵ is a short
distance cutoff. The first set of dots in (1) denotes terms
with subleading power-law divergences. The term Sunivn is
universal in the sense that it does not depend on the detail of

the UV cutoff, whereas coefficients such as γð0Þn are scheme
dependent and nonuniversal.
In odd spacetime dimensions, the universal term is

independent of ϵ but depends nonlocally on the (intrinsic
and extrinsic) shape of the entangling surface. In even
dimensions, however, Sunivn is proportional to ln ϵ and the
universal coefficient is a linear combination of conformal
invariants built from integrals of local geometric quantities
over the entangling surface.
In two dimensions, the universal term is completely

determined by the central charge [25,26,30,31]:

Sunivn ¼ −
c
12

�
1þ 1

n

�
AreaðΣÞ ln ϵ: ð2Þ

In this case the most general region is a union of m
intervals, and the area of Σ is simply 2m, the number of
points in Σ. In three dimensions, the universal term in the
entanglement entropy for spherical regions is identified
with the well-known free energy F on the sphere [32–34].
In this paper we focus on four-dimensional (4D) CFTs in

curved spacetime, where the universal term in the Rényi
entropy (1) can be written as [35]

Sunivn ¼
�
faðnÞ
2π

RΣ þ
fbðnÞ
2π

KΣ −
fcðnÞ
2π

CΣ

�
ln ϵ: ð3Þ

Here fa, fb, and fc are coefficients that depend on n, and
we have defined three conformal invariants

RΣ ≡
Z
Σ
d2y

ffiffiffi
γ

p
RΣ; CΣ ≡

Z
Σ
d2y

ffiffiffi
γ

p
Cab

ab; ð4Þ

KΣ ≡
Z
Σ
d2y

ffiffiffi
γ

p �
trK2 −

1

2
ðtrKÞ2

�
; ð5Þ

where y, γ, RΣ, and K are the coordinates, induced metric,
intrinsic Ricci scalar, and extrinsic curvature tensor of Σ,
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and Cab
ab denotes the contraction of the Weyl tensor

projected to directions orthogonal to Σ.
Entanglement entropy can be studied by taking the

n → 1 limit. In this limit, the universal term is completely
determined by the central charges of the CFT that appear in
the Weyl anomaly [36]:

fað1Þ ¼ a; fbð1Þ ¼ fcð1Þ ¼ c: ð6Þ

Away from n ¼ 1, the coefficients fa, fb, and fc are
generally not determined from the central charges. They
depend on more physical data of the CFT. It was noticed
that fa can be extracted by considering a spherical
entangling region, in which case it is determined by the
thermal free energy of the CFT on a hyperboloid [28]. The
coefficient fc may be obtained by considering a small
shape deformation and working to first order in the
deformation. This involves the stress tensor one-point
function on the hyperboloid background, which is related
to the thermal free energy. In this way it was shown in [37]
that fc is determined by fa:

fcðnÞ ¼
n

n − 1
½a − faðnÞ − ðn − 1Þf0aðnÞ�: ð7Þ

It is also known that fb is in principle determined by
working to second order in the shape deformation [37].
Similar perturbative calculations were performed in other
contexts in [38–41].
The main goal of this paper is to determine fb by using

gauge-gravity duality [42–44]. Our basic strategy is to
relate fb to the stress tensor one-point function in a
deformed version of the hyperboloid background. The
latter is then determined by a straightforward holographic
calculation.
It was conjectured in [45] that

fbðnÞ ¼ fcðnÞ ð8Þ

is a universal property of all 4D CFTs for all n. The
evidence includes the surprising fact that it seems to hold in
any free field theory involving an arbitrary number of
scalars and fermions [45]. There have been recent attempts
to prove or use this conjecture [37,46–49]. In particular, it
was shown in [48] to be equivalent to a conjectural relation
between the universal contribution to the Rényi entropy
from a small conical singularity on the entangling surface
and the conformal dimension hn of the twist operator. It
was further shown in [49] that (8) is equivalent to another
conjecture relating hn to the two-point function of a
displacement operator for twist operators. However, we
will prove here that this conjecture fails for holographic
theories. We will see this by calculating fbðnÞ either
numerically for arbitrary n or analytically by an expansion
in n − 1.

Rényi entropy from the replica trick.—We use the replica
trick to calculate the Rényi entropy

Sn ≡ 1

1 − n
ln trρn ð9Þ

of some region A with the density matrix ρ. For an integer
n > 1, it may be obtained from

Sn ¼
lnZn − n lnZ1

1 − n
; ð10Þ

where Zn is the partition function of the field theory on a
suitable manifold known as the n-fold branched cover.
To study this concretely, we adopt a coordinate system

similar to the Gaussian normal coordinates in a neighbor-
hood of the entangling surface Σ. It is a codimension-2
surface, and on it we choose an arbitrary coordinate system
fyi; i ¼ 1; 2;…; d − 2g. From each point on Σ we may find
a one-parameter family of geodesics orthogonal to Σ. Let us
denote the parameter by τ and employ the coordinates
ðρ; τ; yiÞ in a neighborhood of Σ, where ρ is the radial
distance to Σ along such a geodesic. Choosing the
parameter τ judiciously [50] so that its range is fixed as
2π, we find that the metric in the neighborhood of Σ is

ds2 ¼ dρ2 þ Gττdτ2 þ Gijdyidyj þ 2Gτidτdyi; ð11Þ

where regularity at ρ ¼ 0 requires the expansions

Gττ ¼ ρ2½1þ Tρ2 þOðρ3Þ�; ð12Þ

Gij ¼ γij þ 2Kaijxa þQabijxaxb þOðρ3Þ; ð13Þ

Gτi ¼ ρ2½Ui þOðρÞ�: ð14Þ

Here x1;2 ≡ ρðcos τ; sin τÞ are the coordinates orthogonal to
Σ, and Latin indices such as a and b denote these two
directions, while T, γij, Kaij, Qabij, and Ui are expansion
coefficients that generally depend on yi. In particular, γij
and Kaij are the induced metric and extrinsic curvature
tensor of Σ.
Since the metric (11) is periodic under τ → τ þ 2π, we

may define a different manifold by extending the range of τ
from 2π to 2πn as long as n is an integer. This defines the
n-fold branched cover. It has a conical excess at ρ ¼ 0 (i.e.
the entangling surface Σ), which we regulate by introducing
a short distance cutoff at ρ ¼ ϵ.
It is useful to rewrite the conformal invariants appearing

in (4) and (5) as

trK2 −
1

2
ðtrKÞ2 ¼ KaijKaij −

1

2
KaKa; ð15Þ

Cab
ab ¼

RΣ

3
− 2T −

2

3
UiUi −

1

3
KaKa þ 1

3
Qa

ai
i; ð16Þ
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where Ka ≡ Kai
i is the trace of the extrinsic curvature

tensor. We always use the induced metric γij to raise and
lower Latin indices i, j on K, Q, and U.
Deformed hyperboloid.—For a spherical entangling

region in the vacuum state of a CFT, the Rényi entropy
can be determined by conformally mapping the problem to
one of finding the free energy of the CFT on a unit
hyperboloid with temperature T ¼ 1=2πn [28]. A spherical
entangling surface has vanishing KΣ and CΣ, so its Rényi
entropy gives fa but not fb or fc. To obtain the latter two
coefficients, we consider small shape deformations of Σ
away from a perfect sphere. It is most convenient to choose
the undeformed entangling surface as a flat plane (i.e. a
sphere with infinite radius) with

Gð0Þ
ττ ¼ ρ2; Gð0Þ

ij ¼ δij; Gð0Þ
τi ¼ 0; ð17Þ

and treat terms in (12)–(14) such as the extrinsic curvature
K as shape deformations.
We may perform an arbitrary Weyl transformation gμν ¼

Ω2Gμν on the metric (11) without affecting the Rényi
entropy. This is because the change of the partition function
under a Weyl transformation is governed by the Weyl
anomaly, which is an integral of local geometric invariants.
Such terms cancel between lnZn and n lnZ1 in the Rényi
entropy (10), because locally the n-fold branched cover is
identical to the original spacetime manifold on which the
field theory is defined (away from the conical excess
Σ) [51].
Let us therefore consider the conformally equivalent

metric gμν ¼ Gμν=ρ2:

ds2 ¼ dρ2 þGττdτ2 þ Gijdyidyj þ 2Gτidτdyi

ρ2
: ð18Þ

In the undeformed case (17), the metric (18) simplifies to

ds2ð0Þ ¼ gð0Þμν dxμdxν ¼ dτ2 þ dρ2 þ δijdyidyj

ρ2
; ð19Þ

which describes Hd−1 × S1, a product of the (d − 1)-
dimensional hyperbolic space of unit radius and the τ
circle of size 2πn. For simplicity we call this product space
the hyperboloid background and refer to it as Hd

n.
In the general case of (12)–(14), we view the metric (18)

as a deformed version of the hyperboloid background:

gμν ¼ gð0Þμν þ δgμν: ð20Þ
We call this the deformed hyperboloid background and
refer to it as ~Hd

n.
Our basic strategy for calculating the Rényi entropy is to

perturbatively calculate the partition function on the
deformed hyperboloid background using the fact that the
change of the partition function is governed by the stress
tensor one-point function:

δ lnZn ¼
1

2

Z
ddx

ffiffiffi
g

p hTμνiδgμν: ð21Þ

fb from the stress tensor.—We now work in four
dimensions and show that the coefficient fb is determined
by the stress tensor one-point function in the deformed
hyperboloid background to first order in the extrinsic
curvature K. Our basic idea is that (21) relates the
second-order variation of the partition function to the
first-order variation of the stress tensor one-point function.
Since our goal is to calculate fb, we isolate it by turning

on a small traceless extrinsic curvature tensor K. It is clear
from (16) that such a traceless K does not contribute to
Cab

ab or CΣ. Neither does it contribute toRΣ, a topological
invariant of the two-dimensional entangling surface.
Therefore, such a deformation allows us to easily extract
fb. It is worth noting that we can always make K traceless
by performing a suitable Weyl transformation. Therefore
we realize a traceless K perturbation by deforming the
entangling surface away from a flat plane and applying an
appropriate Weyl transformation to remove the trace of K.
In the hyperboloid background deformed by a traceless

K, the stress tensor one-point function along the yi

directions is

hTiji ~H4
n
¼ ρ2½Pnδ

ij þ αnKa
ijxa þOðρ2Þ�; ð22Þ

where Pn and αn are n-dependent coefficients to be
determined. The first term Pnδ

ij is the stress tensor one-
point function in the perfect hyperboloid background,
whereas the second term contributes to the universal term
KΣ in (3) and determines fb.
Inserting (22) into (21) with δgμν given by a variation of

the traceless extrinsic curvature

δgij ¼
2δKaijxa

ρ2
; ð23Þ

we find

δ lnZn ¼ 2πnαn

Z
ϵ

dρ
ρ3

Z
Σ
d2y

ffiffiffi
γ

p
Ka

ijδKbijxaxb þOðρ3Þ

¼ −πnαn ln ϵ
Z
Σ
d2y

ffiffiffi
γ

p
KaijδKaij þ � � � ; ð24Þ

where the dots denote terms that are finite as ϵ → 0. Here ϵ
plays the role of an infrared (IR) regulator on the infinite
hyperboloid. Integrating (24) in K, we obtain the OðK2Þ
term in the logarithmically divergent part of the partition
function

lnZnjK2 ¼ −
πnαn
2

ln ϵ
Z
Σ
d2y

ffiffiffi
γ

p
KaijKaij: ð25Þ
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Inserting this into (10) and comparing it with (3), we
arrive at

fbðnÞ ¼ π2n
αn − α1
n − 1

: ð26Þ

This result shows that fb is completely determined by the
coefficient αn appearing in the stress tensor one-point
function (22) in the deformed hyperboloid background.
For completeness it is worth mentioning that the coef-

ficient fc is determined by Pn appearing in the stress tensor
one-point function in the perfect hyperboloid background:

fcðnÞ ¼ −3π2n
Pn − P1

n − 1
: ð27Þ

This relation can be shown by using (21) with a shape
deformation that affects CΣ but not KΣ [37]. Considering
for example the deformation given by δgij ¼ Qabijxaxb=ρ2,
we obtain

lnZnjQ ¼ −
πnPn

2
ln ϵ

Z
Σ
d2y

ffiffiffi
γ

p
Qa

ai
i: ð28Þ

Inserting this into (10) and comparing it with (3) with the
help of (16), we obtain (27).
It is worth noting that the above results can be repro-

duced by similar calculations in the conical background
(11). This involves reversing the Weyl transformation (18)
and finding the stress tensor one-point function in (11) from
(22). There is an anomalous contribution which is analo-
gous to the Schwarzian derivative in two-dimensional
CFTs, but it depends locally on the geometry and cancels
between lnZn and n lnZ1 in the Rényi entropy (10).
Holographic calculation.—To obtain the coefficient fb,

we still need to calculate αn in the stress tensor one-point
function (22). Here we finish this last step using gauge-
gravity duality. Let us consider a holographic CFT dual to a
gravitational theory in a bulk spacetime with one additional
dimension. The CFT lives on the asymptotic boundary of
the bulk spacetime, and expectation values of local oper-
ators such as the stress tensor in the CFT are determined by
the asymptotic behaviors of the corresponding fields such
as the metric in the bulk.
The bulk metric that asymptotes to the deformed hyper-

boloid background (18) is [52]

ds2bulk ¼
dr2

fðrÞ þ fðrÞdτ2

þ r2

ρ2
fdρ2 þ ½δij þ 2kðrÞKaijxa�dyidyjg þ � � � ;

ð29Þ

where we have focused on deformations by a traceless
extrinsic curvature tensor K, and the dots denote

higher-order terms in ρ. This metric describes a deformed
(Euclidean) hyperbolic black hole. We choose the bulk
coordinates using orthogonal geodesics originating from
the black hole horizon (a codimension-2 surface), similar to
the procedure described above (11). The metric (29) is
uniquely fixed at this order in ρ by the bulk equations of
motion up to diffeomorphisms. In cases where the five-
dimensional bulk is governed by Einstein gravity, the
blackening factor fðrÞ is

fðrÞ ¼ r2 − 1 −
r2hðr2h − 1Þ

r2
ð30Þ

as determined by Einstein’s equations in the metric (29) to
leading order in ρ. Here rh is the location of the horizon and
determined as a function of n by the larger root of

n ¼ 2

f0ðrhÞ
¼ rh

2r2h − 1
: ð31Þ

To see this, we impose regularity at the horizon with the
range of τ being 2πn.
Expanding Einstein’s equations in the metric (29) to next

order in ρ, we find a second-order differential equation for
the function kðrÞ:

k00ðrÞ þ
�
3

r
þ f0ðrÞ

fðrÞ
�
k0ðrÞ − r2 þ fðrÞ

r2fðrÞ2 kðrÞ ¼ 0: ð32Þ

Generic solutions to this equation behave like ðr − rhÞ�n=2

near the horizon. Regularity of the extrinsic curvature
deformation in (29) therefore demands kðrÞ ∼ ðr − rhÞn=2
near r ¼ rh. The solution to (32) is uniquely determined by
this IR boundary condition and the UV boundary condition
limr→∞kðrÞ ¼ 1. Expanding the solution near the asymp-
totic boundary, we find

kðrÞ ¼ 1 −
1

2r2
þ βn

r4
þO

�
1

r6

�
; ð33Þ

where βn is the coefficient of the normalizable mode and
not fully determined by analysis near the asymptotic
boundary.
The stress tensor one-point function in the CFT is

determined by the asymptotic expansion of the bulk metric.
Using the results of [53], we find (22) with

Pn ¼
ðr2h − 1

2
Þ2

16πGN
; αn ¼

4βn − r4h þ r2h þ 1
4

8πGN
; ð34Þ

where GN denotes Newton’s constant. Inserting these
values into (26) and (27), we obtain

fbðnÞ ¼
nð4βn − 4β1 þ r2h − r4hÞ

n − 1
c; ð35Þ
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fcðnÞ ¼
3nðr2h − r4hÞ
2ðn − 1Þ c; ð36Þ

where we have used the relation c ¼ π=8GN and that
rh ¼ 1 when n ¼ 1 according to (31).
It remains to determine the coefficient βn. We solve the

differential equation (32) numerically and plot the resulting
fbðnÞ against fcðnÞ in Fig. 1. They coincide at n ¼ 1 but
not generally. It is worth noting that their difference is quite
small for a large range of values of n, raising the question of
whether the numerical proof of fbðnÞ ¼ fcðnÞ in [45] for
free field theories was established with sufficient accu-
racy [54].
Alternatively, we can solve (32) perturbatively in n − 1.

To do this we define

hðrÞ≡ kðrÞ exp
�Z

∞

r

dr
fðrÞ

�
; ð37Þ

and the differential equation (32) becomes

h00ðrÞ þ
�
3

r
þ 2þ f0ðrÞ

fðrÞ
�
h0ðrÞ þ 3r − 1

r2fðrÞ hðrÞ ¼ 0: ð38Þ

The advantage of working with hðrÞ is that the regularity
condition at the horizon simply requires hðrhÞ to be finite.
Expanding in n − 1, we find

hðrÞ ¼ rþ 1

r
þ ðn − 1Þh1ðrÞ þ ðn − 1Þ2h2ðrÞ þ � � � ;

ð39Þ

where

h1ðrÞ ¼
rþ 1

r
ln

�
rþ 1

r

�
−
6r2 þ 3r − 1

6r3
; ð40Þ

h2ðrÞ ¼
rþ 1

2r
ln2

�
rþ 1

r

�
−
6r2 þ 3r − 1

6r3
ln

�
rþ 1

r

�

þ 216r3 − 85rþ 27

432r5
: ð41Þ

From the asymptotic behaviors of these functions we obtain

βn ¼ −
1

8
þ n − 1

12
−
67ðn − 1Þ2

432
þOðn − 1Þ3: ð42Þ

Inserting this into (35) we arrive at

fbðnÞ ¼
�
1 −

11

12
ðn − 1Þ þOðn − 1Þ2

�
c; ð43Þ

which agrees with

fcðnÞ ¼
�
1 −

17

18
ðn − 1Þ þOðn − 1Þ2

�
c ð44Þ

when n ¼ 1 but not for general n.
Similar perturbative techniques can be used in the small

n limit:

fbðnÞ ¼
1þOðnÞ
16n3

c; fcðnÞ ¼
3þOðnÞ
32n3

c; ð45Þ

or in the large n limit, leading to

fbðnÞ ≈ 0.3800cþOðn−1Þ; fcðnÞ ¼
3

8
cþOðn−1Þ:

ð46Þ

Discussion.—The universal coefficient fb governs the
variation of the Rényi entropy under traceless extrinsic
curvature deformations in 4D CFTs. We have seen that it is
entirely determined by the stress tensor one-point function
in the deformed hyperboloid background, which we have
calculated holographically. Surprisingly, our results dis-
prove the fbðnÞ ¼ fcðnÞ conjecture. It is worth exploring
why this relation seems to hold for free field theories but
fails holographically.
The coefficient fb is not only related to the stress tensor

one-point function but is also connected to the universal
contribution to the Rényi entropy from a conical entangling
surface and the two-point function of a displacement
operator for twist operators. A more general conjecture,
proposed in two equivalent ways in [48,49] for an arbitrary
CFT in any dimensions, relates the universal conical
contribution and the displacement operator two-point
function to the conformal dimension of the twist operator.
This conjecture is equivalent to fbðnÞ ¼ fcðnÞ in four
dimensions and therefore is also disproved by our holo-
graphic results. However, it is worth studying this con-
jecture in other dimensions, either using an analog of the
techniques developed here or applying the area-law pre-
scription for holographic Rényi entropy recently proposed
in [55].

fb(n)

fc(n)

0.5 1 2 5 10

0.5

1

2

n

f b
,c

/c

0.5 1 2 5 10

–0.025
–0.020
–0.015
–0.010
–0.005

0.000
0.005

n

(f
b
–

f c
)/c

FIG. 1. Plots of fbðnÞ against fcðnÞ in units of the central
charge c in holographic CFTs. In the left logarithmic plot we
show both of them for the range 0.5 ≤ n ≤ 10. We show their
difference more clearly in the right plot.
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It is worth exploring why the violation of the fbðnÞ ¼
fcðnÞ conjecture in holographic CFTs appears small for a
large range of values of n. It opens up the possibility that
the conjecture holds approximately and provides a simple
method of calculating fb from fc with reasonable accuracy.
Finally, our results form a step towards studying the shape
dependence of entanglement and Rényi entropies in many
other contexts and dimensions.
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