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We construct a three-dimensional, fully relativistic numerical model of a universe filled with an
inhomogeneous pressureless fluid, starting from initial data that represent a perturbation of the Einstein–de
Sitter model. We then measure the departure of the average expansion rate with respect to this
homogeneous and isotropic reference model, comparing local quantities to the predictions of linear
perturbation theory. We find that collapsing perturbations reach the turnaround point much earlier than
expected from the reference spherical top-hat collapse model and that the local deviation of the expansion
rate from the homogeneous one can be as high as 28% at an underdensity, for an initial density contrast
of 10−2. We then study, for the first time, the exact behavior of the backreaction term QD. We find that,
for small values of the initial perturbations, this term exhibits a 1=a scaling, and that it is negative
with a linearly growing absolute value for larger perturbation amplitudes, thereby contributing to an
overall deceleration of the expansion. Its magnitude, on the other hand, remains very small even for
relatively large perturbations.
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Cosmology as a physical theory of the Universe was
born soon after the formulation of general relativity one
hundred years ago [1], yet the extent to which relativistic
nonlinearity may affect structure formation remains largely
unexplored. With the increasing volume of cosmological
data and their precision, more sophisticated modeling is
required, and thus it is becoming timely to quantify these
relativistic effects. The current theoretical framework for
cosmology is based on three main ingredients: a homo-
geneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) background, relativistic perturbation theory
to describe fluctuations in the earlyUniverse and at very large
scale, and Newtonian methods, notablyN-body simulations,
to study the evolution of fluctuations into the nonlinear
regime of structure formation. Reconciling this framework
with the observations requires the existence of dark compo-
nents, cold dark matter (CDM) and a cosmological constant
Λ or some other form of dark energy. The resulting standard
cosmological model, ΛCDM, satisfies a vast class of
observational constraints, in particular the high-precision
measurements of the cosmic microwave background anisot-
ropies [2]. However, the existence and nature of these dark
constituents are one of the most debated topics not only
in modern cosmology, but also in theoretical physics.
One aspect that has been the subject of intense debate is
the question whether nonlinear relativistic “backreaction”
effects due to formation of structures may play an important
role in the average cosmic expansion [3–7].
Quantifying the systematic errors involved in the differ-

ent modeling approximations, such as the use of Newtonian
gravity for structure formation, is a crucial undertaking if

one wishes to correctly interpret the data that will be
produced by the upcoming precision surveys [8,9]. While
some approaches have been introduced to estimate the role of
relativistic corrections in N-body simulations [10–15], the
only viable avenue to an exact computation of the systematic
errors resulting from the omission of these effects is the
direct numerical integration of Einstein’s equation in the
corresponding scenarios. Integrating the equations of general
relativity, possibly coupled to stress-energy sources, is the
field of numerical relativity, a framework strongly motivated
by gravitational-wave-source modeling, but which has, over
the years, developed in a number of parallel areas such as
cosmology, mathematical relativity, and modified gravity
[16]. Some of this work has already been aimed at studying
inhomogeneous cosmologies [17–21]. While these numeri-
cal-relativity studies do not yet aspire to the level of realism
achieved by N-body simulations [22,23], they are useful
test beds to quantify the relativistic effects of nonlinear
inhomogeneity on the cosmic expansion.
In this Letter, we integrate Einstein’s equation coupled

to an inhomogeneous irrotational pressureless fluid (dust)
with a three-dimensional density profile and no continuous
symmetries. We choose initial data corresponding to a
perturbed Einstein–de Sitter (EdS) model, i.e., a flat FLRW
model with dust, with the aim of measuring, with no
approximations, the departures of the fully nonlinear
numerical solution from the idealized FLRW background
and its perturbations. On the numerically generated space-
times, we measure a number of local and average properties
of cosmological interest, such as the growth of over-
densities and the formation of voids, the inhomogeneous
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and average expansion rate, and the backreaction term
defined in the averaging framework [3]. The main results of
this study are that (i) those perturbations that are large
enough to collapse stop partaking in the cosmic expansion
(i.e., reach the “turnaround” point) much earlier than
expected from a spherical top-hat collapse model with
the same initial density contrast, (ii) locally, the effects of
nonlinear inhomogeneities can be substantial, leading to a
departure from the average expansion rate of over 28% at
the underdensities, and (iii) the average expansion rate is
hardly affected by the inhomogeneities, with a backreaction
term which is never larger than 10−8.
Method.—We integrate Einstein’s equation and the fluid

conservation equation using a variant of the Baumgarte-
Shapiro-Shibata-Nakamura formulation [24–26], along
with the Wilson formulation for the hydrodynamical
system [27] and the conformal transverse traceless formu-
lation for the Einstein constraints [28,29], an approach
already used in cosmological settings [30–32]. We choose
to represent the spacetime in the synchronous-comoving
gauge [33], popular in cosmological perturbation theory
[22], which corresponds to the Lagrangian coordinates of
the observers at rest with the matter.
To integrate this system, we use the Einstein Toolkit [34],

a free, open-source community infrastructure for numerical
relativity. In particular, we use the MCLACHLAN code [35]
for the evolution of the gravitational variables, the CARPET

[36] package for handling adaptive mesh refinement, and
the multigrid elliptic solver CT_MULTILEVEL [37] to gen-
erate initial data; this is then coupled to a new module
which evolves the hydrodynamical equations. All equa-
tions are discretized using fourth-order finite differencing.
The Einstein Toolkit is routinely used for simulations in

relativistic astrophysics, and passes a variety of tests [34].
Likewise, as will be presented elsewhere, the new module
correctly reproduces several exact cosmological models
with varying degrees of inhomogeneity. All results pre-
sented are convergent at the correct rate as the grid spacing
is decreased, and we use this fact to extrapolate the
continuum solution of the evolution system and to estimate
the error bars resulting from its numerical integration at
finite resolution. These are the quantities that appear in
all plots.
Perturbations and averaging.—We recall two appro-

aches commonly used to solve the evolution system
approximately, so that we can compare our solution to
these schemes and check that we obtain the correct
behavior in the appropriate regime.
For irrotational dust in the synchronous-comoving gauge,

the line element can be written (with no loss of generality
[33]) as ds2 ¼ −dt2 þ γijdxidxj, where γij is the spatial
metric. For spacetimes that are close enough to a FLRW
model, one can use perturbation theory to follow the
departures from the exact background solution. In the matter
era, this is the spatially flat EdS model, with metric

γ̄ij ¼ aðtÞ2δij, where the scale factor aðtÞ is a solution of
Friedmann’s equations

_a2

a2
¼ 8πρ̄

3

ä
a
¼ −

4π

3
ρ̄; ð1Þ

where the dot represents a time derivative, and we denote
the EdS-background quantities with an overbar. The matter
continuity equation gives ρ̄ ∼ a−3 for the background density.
Starting from the inhomogeneous density ρ, one can define
the density contrast δ ¼ ðρ − ρ̄Þ=ρ̄; its growth in the
synchronous-comoving gauge is governed, at first order, by

δ00 þ 3

2a
δ0 −

3

2a2
δ ¼ 0. ð2Þ

The system of (1) and (2) is then solved by

aðtÞ ¼ ai

�
t
ti

�
2=3

; ð3Þ

δðtÞ ¼ δþaðtÞ þ δ−aðtÞ−3=2; ð4Þ
where δþ and δ− are the so-called growing and decaying
modes. Wewill use these expressions below as a consistency
check in the small-perturbation regime.
Another useful framework is that of cosmological aver-

aging [3], where Einstein’s equation is reduced from a set of
partial differential equations for the fields to a set of ordinary
differential equations in time for some of their averages
over a given spatial region D. Defining its volume as

a3D ¼
Z
D

ffiffiffi
γ

p
d3x; ð5Þ

where γ is the determinant of the spatial metric γij, one finds
that the average scale factor aD satisfies a system similar to
Friedmann’s (1), and in particular that

äD
aD

¼ −
4π

3

MD

a3D
þQD

3
; ð6Þ

where

MD ¼
Z
D

ffiffiffi
γ

p
ρd3x ð7Þ

QD ¼ 2

3
ðhK2iD − hKi2DÞ − 2hA2iD: ð8Þ

Here K is the trace of the extrinsic curvature Kij ≡ −_γij=2,
A2 ¼ AijAij=2, Aij is the traceless part of Kij, and h·iD
denotes the average of a field overD. Note that−K represents
the local expansion rate, and in the FLRW backgroundH ¼
−K̄=3 is the Hubble parameter. While this setup is exact, the
computation ofQD itself requires tensorial quantities that do
not satisfy ordinary differential equations; i.e., the system of
ordinary differential equations for the averaged quantities is
not closed. To circumvent this problem, one typically closes
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the system with a well-motivated ansatz for QD. One can,
for instance, calculate its perturbative behavior: at first order,
this term is identically zero, while at second order it scales
as QD ∼ a−1 [7,38], but with a coefficient containing only
surface terms of the averaging volume, which vanish for
periodic domains. Beyond this order, the analytical approach
becomes exceedingly difficult. A main goal of this Letter
is to present an exact measurement of this quantity on an
inhomogeneous spacetime.
Results.—Our numerical investigation involves the evo-

lution of a cubic domain of coordinate side L, with periodic
boundary conditions (because we set G ¼ c ¼ 1, L will
serve as the unit in which all other quantities, including
mass and time, are measured). We discretize this domain
with 1603 points (running two lower resolutions with 803

and 403 to quantify the error bars). We choose the initial
density profile as that of the EdS model at the timewhen the
Hubble horizon H−1

i ¼ L=4, plus a superimposed pertur-
bation of initial amplitude δi (varying between 10−6 and
10−2) and comoving wavelength L,

ρi ¼ ρ̄i

�
1þ δi

X3
j¼1

sin
2πxj

L

�
: ð9Þ

The ratio ρ=ρ̄ for δi ¼ 10−2 is shown in Fig. 1. As δi
decreases, we expect to recover a cubic domain of the EdS
model. By increasing δi, we should then be able to observe
the onset of nonperturbative effects.
We first need to solve the Einstein constraints; to

simplify them, we choose a vanishing traceless part of
the extrinsic curvature and a spatially constant K. This
corresponds, initially, to having a vanishing first-order
perturbation of the expansion and a nonzero decaying
mode δ− in (4) [22]. The momentum constraint is then
identically satisfied, and the Hamiltonian constraint
reduces to the nonlinear elliptic equation

Δψ −
�
K2

i

12
− 2πρi

�
ψ5 ¼ 0; ð10Þ

where ψ ¼ γ1=12. Using (9) and Ki ¼ K̄i ¼ −3Hi ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffi
24πρ̄i

p ¼ −12=L, we solve this equation with

CT_MULTILEVEL [37], obtaining the initial profile for γ
(normalized to the EdS value) shown in Fig. 2.
We then evolve the coupled gravitational and hydrody-

namical equations, until the linear size of the domain has
increased by roughly 100 times. We measure the departure
of the volume expansion, represented by aD, from the EdS
background model, for different initial amplitudes of the
density contrast δi; as clearly shown in Fig. 3, this differ-
ence is always small. We also monitor the density contrast
at the overdensities and underdensities. As expected from
linear perturbation theory, and shown in Fig. 4, for small
values of the initial δi the density contrast grows linearly
with a, with a well-behaved evolution through a=ai ¼ 100.
For δi ¼ 10−2, there is a clear departure from this behavior,
with the overdensity becoming nonlinear already at
a=ai ¼ 5, and eventually growing unbounded when
a=ai ∼ 96. In Fig. 5 we plot the fractional difference of
K (the local expansion rate) from the background value
K̄ ¼ −3H at the overdensities and underdensities. As
expected, the expansion is larger at the underdensities
and smaller at the overdensities. For δi ¼ 10−2, the depar-
ture from the expansion rate of the EdS background is
substantial: again, the expansion is already visibly non-
linear at a=ai ¼ 5, and the overdensity reaches the

FIG. 1. Profile of the matter density ratio ρ=ρ̄ on the y ¼ z
plane (d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
) for δi ¼ 10−2, when a ¼ ai (left) and

when a ∼ 96ai (right).

FIG. 2. Profile of γ=γ̄ on the y ¼ z plane (d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
) for

δi ¼ 10−2, when a ¼ ai (left) and when a ∼ 96ai (right).

FIG. 3. Fractional difference of the scale factor aD of the
simulation domain with respect to the EdS scale factor a, as a
function of the equal-time a, for δi ¼ 10−2; 10−3; 10−4; 10−5, and
10−6 (top to bottom). The numerical error bars, where visible, are
included as shaded regions.
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turnaround point (signaled by KOD ¼ 0) at a=ai ∼ 60. At
turnaround, the linearly extrapolated density contrast is
only δT ¼ 0.6, much smaller than the standard value from
spherical top-hat collapse, δT ¼ 1.06 [39]. For the same
initial density contrast, the underdensity asymptotically
approaches the expansion of the Milne model
(a vacuum FLRW model with negative spatial curvature,
represented by the solid gray line in Fig. 5), as predicted in
[40], with a fractional departure from EdS of over 28% at
a=ai ∼ 96. These are the first two important results of our
calculations: even in this simple setup, with a perturbation
wavelength initially four times larger than the EdS Hubble
horizon, the onset of nonlinearity can occur very early, and
inhomogeneities can affect the local expansion rate in a
substantial, nonperturbative way.
In particular, the observed difference with respect to

the spherical homogeneous top-hat collapse is due to the
interplay of several factors, most notably the inhomo-
geneous character of the density, expansion rate, and
3-curvature, and the nonvanishing shear σ, absent in the
top-hat case. Whereas in the latter case the perturbation

is constrained to remain spatially constant, an inhomo-
geneous density and expansion accelerate the approach to
turnaround at the peak, just like they do in the spherical
Newtonian case [41,42]. The shear also gives a small
correction, which for δi ¼ 10−2 is non-negligible even in
the initial perturbative regime [22,43,44]. These effects
combine, leading to a negative contribution to the evolution
of the local expansion rate −K, pushing it towards the
turnaround (K ¼ 0), and accelerating the collapse. The
difference with the top-hat collapse is an important issue
which we will investigate in detail in future work.
We then proceed tomeasure the backreactionquantityQD;

the results are shown inFig. 6.We extract a few relevant facts:
first, given our initial conditionsKi ¼ K̄i ¼ −3Hi, it follows
from the definition (8) that QD vanishes on the initial time
slice. We also notice that, for smaller perturbations, QD
remains zerowithin our error bars; for larger perturbations, it
is clear from Fig. 6 that QD goes through a short transient
phase before following the scaling QD ∼ a−1 for a period
which is shorter for higher δi. Given that the only second-
order contributions toQD are boundary terms that vanish on
periodic domains like the one we used [38], we conjecture
that only higher-order terms are contributing to QD.
Finally, QD enters the nonperturbative regime, where it is
negative and its absolute value increases linearly with the
scale factor. The effect is a very small deceleration of the
expansion with respect to the EdS model. We conclude
that the absolute value ofQD remains generally quite small,
but is not identically zero, as would follow from the
assumptions of [45].
Measuring the sign and scaling of the backreactionQD is

a particularly relevant task, as many speculations on the
effect of inhomogeneities on the average cosmic expansion
rate are based on conjectures on these two properties. A
back-of-the-envelope estimate involves the comparison of
two competing effects, as quantities like the matter density
at the overdensities quickly depart from the background

FIG. 4. Growth of the density contrast δOD at the overdensities
(solid lines) and its negative −δUD at the underdensities (dashed
lines), for δi ¼ 10−2; 10−3; 10−4; 10−5, and 10−6 (top to bottom).
The linear-perturbation behavior is indicated by dotted lines.

FIG. 5. Fractional expansion rate 1 − KOD=K̄ at the over-
densities (solid lines) and its negative KUD=K̄ − 1 at the under-
densities (dashed lines), for δi ¼ 10−2; 10−3; 10−4; 10−5, and 10−6

(top to bottom). For δi ¼ 10−2 the overdensity starts collapsing at
a ∼ 60ai. The underdensity with δi ¼ 10−2 expands much faster
than the background, asymptotically approaching the expansion
of the Milne model (horizontal dark-gray line).

FIG. 6. Absolute value of the backreaction QD as a function
of the equal-time scale factor in Einstein–de Sitter space,
for δi ¼ 10−2; 10−3; 10−4; 10−5, and 10−6 (top to bottom). The
numerical error bars, where visible, are included as shaded
regions. For comparison, we have superimposed dashed lines
representing the QD ∼ a−1D scaling.
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value, but at the same time these regions take up a
decreasing fractional volume and become proportionally
less and less relevant to the average. Our results indicate
that, at least for the specific configuration studied here, the
former effect prevails, and the balance is towards an overall
slowdown of the expansion rate.
In summary, within the limitations of our setup, in this

Letter we found that, whereas local departures from the
background density and expansion rate can be tangible,
the average behavior of large volumes remains close to the
FLRW background.

We are grateful to Alessio Notari and an anonymous
referee for enlightening comments on this work. E. B. is
supported by the project “Digitizing the universe: Precision
modelling for precision cosmology,” funded by the Italian
Ministry ofEducation,University andResearch (MIUR).M.
B. is supported by the UK STFC Grant No. ST/K00090X/1
and ST/N000668/1. The simulations presented in this paper
were carried out on the Sciama supercomputer at the Institute
of Cosmology and Gravitation in Portsmouth.

*Corresponding author.
eloisa.bentivegna@unict.it

[1] G. F. R. Ellis, General Relativity and Gravitation: A Cen-
tennial Perspective, edited by A. Ashtekar, B. K. Berger,
J. Isenberg, and M. MacCallum (Cambridge University
Press, Cambridge, England, 2015).

[2] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, arXiv:1502.01589.

[3] T. Buchert, On average properties of inhomogeneous fluids
in general relativity: Dust cosmologies, Gen. Relativ. Gravit.
32, 105 (2000).

[4] S. Rasanen, Backreaction: Directions of progress, Classical
Quantum Gravity 28, 164008 (2011).

[5] T. Buchert et al., Is there proof that backreaction of
inhomogeneities is irrelevant in cosmology?, Classical
Quantum Gravity 32, 215021 (2015).

[6] S. R. Green and R. M. Wald, Comments on backreaction,
arXiv:1506.06452.

[7] E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto, Effect
of inhomogeneities on the expansion rate of the universe,
Phys. Rev. D 71, 023524 (2005).

[8] L. Amendola, Cosmology and fundamental physics with the
Euclid Satellite, Living Rev. Relativ. 16, 6 (2013).

[9] R. Maartens, F. B. Abdalla, M. Jarvis, and M. G. Santos
(SKA Cosmology SWG Collaboration), Cosmology with
the SKA-overview, arXiv:1501.04076.

[10] M. Bruni, D. B. Thomas, and D. Wands, Computing
general-relativistic effects from Newtonian N-body simu-
lations: Frame dragging in the post-Friedmann approach,
Phys. Rev. D 89, 044010 (2014).

[11] D. B. Thomas, M. Bruni, and D. Wands, The fully non-
linear post-Friedmann frame-dragging vector potential:
Magnitude and time evolution from N-body simulations,
Mon. Not. R. Astron. Soc. 452, 1727 (2015).

[12] I. Milillo, D. Bertacca, M. Bruni, and A. Maselli, Missing
link: A nonlinear post-Friedmann framework for small and
large scales, Phys. Rev. D 92, 023519 (2015).

[13] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, General
relativistic N-body simulations in the weak field limit,
Phys. Rev. D 88, 103527 (2013).

[14] J. Adamek, R. Durrer, and M. Kunz, N-body methods
for relativistic cosmology, Classical Quantum Gravity 31,
234006 (2014).

[15] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, General
relativity and cosmic structure formation, Nat. Phys. 12, 346
(2016).

[16] V. Cardoso, L. Gualtieri, C. Herdeiro, and U. Sperhake,
Exploring new physics frontiers through numerical rela-
tivity, Living Rev. Relativ. 18, 1 (2015).

[17] E. Bentivegna and M. Korzynski, Evolution of a periodic
eight-black-hole lattice in numerical relativity, Classical
Quantum Gravity 29, 165007 (2012).

[18] C.-M. Yoo, H. Abe, Y. Takamori, and K.-i. Nakao, Black
hole universe: Construction and analysis of initial data,
Phys. Rev. D 86, 044027 (2012).

[19] C.-M. Yoo, H. Okawa, and K.-i. Nakao, Black-Hole Uni-
verse: Time Evolution, Phys. Rev. Lett. 111, 161102 (2013).

[20] E. Bentivegna and M. Korzynski, Evolution of a family of
expanding cubic black-hole lattices in numerical relativity,
Classical Quantum Gravity 30, 235008 (2013).

[21] C.-M. Yoo and H. Okawa, Black hole universe with a
cosmological constant, Phys. Rev. D 89, 123502 (2014).

[22] M. Bruni, J. C. Hidalgo, N. Meures, and D. Wands,
Non-Gaussian initial condition in ΛCDM: Newtonian,
relativistic, and primordial contributions, Astrophys. J. 785,
2 (2014).

[23] C. Fidler, C. Rampf, T. Tram, R. Crittenden, K. Koyama,
and D. Wands, General relativistic corrections to N-body
simulations and the Zel’dovich approximation, Phys. Rev. D
92, 123517 (2015).

[24] T. Nakamura, K. Oohara, and Y. Kojima, General relativistic
collapse to Black Holes and gravitational waves from Black
Holes, Prog. Theor. Phys. Suppl. 90, 1 (1987).

[25] M. Shibata and T. Nakamura, Evolution of three-dimensional
gravitational waves: Harmonic slicing case, Phys. Rev. D 52,
5428 (1995).

[26] T. W. Baumgarte and S. L. Shapiro, Numerical integration
of Einstein’s field equations, Phys. Rev. D 59, 024007
(1998).

[27] J. A. Font, Numerical hydrodynamics and magnetohydro-
dynamics in general relativity, Living Rev. Relativ. 11,
(2008).

[28] A. Lichnerowicz, L’intégration des équations de la gravi-
tation relativiste et le probleme des n corps, J. Math. Pures
Appl. 23, 37 (1944).

[29] J. W. York, Jr., Gravitational Degrees of Freedom and the
Initial-Value Problem, Phys. Rev. Lett. 26, 1656 (1971).

[30] P. Anninos and J. McKinney, Relativistic hydrodynamics
of cosmological sheets, Phys. Rev. D 60, 064011
(1999).

[31] J. T. Giblin, J. B. Mertens, and G. D. Starkman, preceding
Letter, Departures from the FLRW Cosmological Model in
an Inhomogeneous Universe: A Numerical Examination,
Phys. Rev. Lett. 116, 251301 (2016).

PRL 116, 251302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JUNE 2016

251302-5

http://arXiv.org/abs/1502.01589
http://dx.doi.org/10.1023/A:1001800617177
http://dx.doi.org/10.1023/A:1001800617177
http://dx.doi.org/10.1088/0264-9381/28/16/164008
http://dx.doi.org/10.1088/0264-9381/28/16/164008
http://dx.doi.org/10.1088/0264-9381/32/21/215021
http://dx.doi.org/10.1088/0264-9381/32/21/215021
http://arXiv.org/abs/1506.06452
http://dx.doi.org/10.1103/PhysRevD.71.023524
http://dx.doi.org/10.12942/lrr-2013-6
http://arXiv.org/abs/1501.04076
http://dx.doi.org/10.1103/PhysRevD.89.044010
http://dx.doi.org/10.1093/mnras/stv1390
http://dx.doi.org/10.1103/PhysRevD.92.023519
http://dx.doi.org/10.1103/PhysRevD.88.103527
http://dx.doi.org/10.1088/0264-9381/31/23/234006
http://dx.doi.org/10.1088/0264-9381/31/23/234006
http://dx.doi.org/10.1038/nphys3673
http://dx.doi.org/10.1038/nphys3673
http://dx.doi.org/10.1007/lrr-2015-1
http://dx.doi.org/10.1088/0264-9381/29/16/165007
http://dx.doi.org/10.1088/0264-9381/29/16/165007
http://dx.doi.org/10.1103/PhysRevD.86.044027
http://dx.doi.org/10.1103/PhysRevLett.111.161102
http://dx.doi.org/10.1088/0264-9381/30/23/235008
http://dx.doi.org/10.1103/PhysRevD.89.123502
http://dx.doi.org/10.1088/0004-637X/785/1/2
http://dx.doi.org/10.1088/0004-637X/785/1/2
http://dx.doi.org/10.1103/PhysRevD.92.123517
http://dx.doi.org/10.1103/PhysRevD.92.123517
http://dx.doi.org/10.1143/PTPS.90.1
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.12942/lrr-2008-7
http://dx.doi.org/10.12942/lrr-2008-7
http://dx.doi.org/10.1103/PhysRevLett.26.1656
http://dx.doi.org/10.1103/PhysRevD.60.064011
http://dx.doi.org/10.1103/PhysRevD.60.064011
http://dx.doi.org/10.1103/PhysRevLett.116.251301


[32] J. B. Mertens, J. T. Giblin, and G. D. Starkman, Integration
of inhomogeneous cosmological spacetimes in the
BSSN formalism, arXiv:1511.01106 [Phys. Rev. D (to be
published)].

[33] L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon Press, Oxford, 1975).

[34] F. Loffler, J. Faber, E. Bentivegna, T. Bode, P. Diener
et al., The Einstein toolkit: A community computational
infrastructure for relativistic astrophysics, Classical
Quantum Gravity 29, 115001 (2012); Einstein Toolkit,
http://www.einsteintoolkit.org.

[35] Computer code MCLACHLAN, https://www.cct.lsu.edu/
~eschnett/McLachlan/; Computer code KRANC, http://
www.kranccode.org.

[36] E. Schnetter, S. H. Hawley, and I. Hawke, Evolutions in 3D
numerical relativity using fixed mesh refinement, Classical
Quantum Gravity 21, 1465 (2004).

[37] E. Bentivegna, Solving the Einstein constraints in periodic
spaces with a multigrid approach, Classical Quantum
Gravity 31, 035004 (2014).

[38] N. Li and D. J. Schwarz, Scale dependence of cosmological
backreaction, Phys. Rev. D 78, 083531 (2008).

[39] J. A. Peacock, Cosmological Physics (Cambridge University
Press, Cambridge, England, 1999).

[40] M. Bruni, S. Matarrese, and O. Pantano, Dynamics of
silent universes, Astrophys. J. 445, 958 (1995); A Local
View of the Observable Universe, Phys. Rev. Lett. 74, 1916
(1995).

[41] T. Buchert, M. Kerscher, and C. Sicka, Back reaction of
inhomogeneities on the expansion: The evolution of cos-
mological parameters, Phys. Rev. D 62, 043525 (2000).

[42] D. Rubin and A. Loeb, The virialization density of peaks
with general density profiles under spherical collapse,
J. Cosmol. Astropart. Phys. 12 (2013) 019.

[43] F. R. Bouchet, R. Juszkiewicz, S. Colombi, and R. Pellat,
Weakly nonlinear gravitational instability for arbitrary
Omega, Astrophys. J. 394, L5 (1992).

[44] M. Tellarini, A. J. Ross, G. Tasinato, and D. Wands,
Non-local bias in the halo bispectrum with primordial
non-Gaussianity, J. Cosmol. Astropart. Phys. 07 (2015)
004.

[45] S. R. Green and R. M. Wald, New framework for analyzing
the effects of small scale inhomogeneities in cosmology,
Phys. Rev. D 83, 084020 (2011).

PRL 116, 251302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JUNE 2016

251302-6

http://arXiv.org/abs/1511.01106
http://arXiv.org/abs/1511.01106
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://www.einsteintoolkit.org
http://www.einsteintoolkit.org
http://www.einsteintoolkit.org
https://www.cct.lsu.edu/%7Eeschnett/McLachlan/
https://www.cct.lsu.edu/%7Eeschnett/McLachlan/
https://www.cct.lsu.edu/%7Eeschnett/McLachlan/
https://www.cct.lsu.edu/%7Eeschnett/McLachlan/
https://www.cct.lsu.edu/%7Eeschnett/McLachlan/
http://www.kranccode.org
http://www.kranccode.org
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/31/3/035004
http://dx.doi.org/10.1088/0264-9381/31/3/035004
http://dx.doi.org/10.1103/PhysRevD.78.083531
http://dx.doi.org/10.1086/175755
http://dx.doi.org/10.1103/PhysRevLett.74.1916
http://dx.doi.org/10.1103/PhysRevLett.74.1916
http://dx.doi.org/10.1103/PhysRevD.62.043525
http://dx.doi.org/10.1088/1475-7516/2013/12/019
http://dx.doi.org/10.1086/186459
http://dx.doi.org/10.1088/1475-7516/2015/07/004
http://dx.doi.org/10.1088/1475-7516/2015/07/004
http://dx.doi.org/10.1103/PhysRevD.83.084020

