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While the use of numerical general relativity for modeling astrophysical phenomena and compact
objects is commonplace, the application to cosmological scenarios is only just beginning. Here, we
examine the expansion of a spacetime using the Baumgarte-Shapiro-Shibata-Nakamura formalism of
numerical relativity in synchronous gauge. This work represents the first numerical cosmological study that
is fully relativistic, nonlinear, and without symmetry. The universe that emerges exhibits an average
Friedmann-Lemaître-Robertson-Walker (FLRW) behavior; however, this universe also exhibits locally
inhomogeneous expansion beyond that expected in linear perturbation theory around a FLRW background.
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In the past two decades, numerical general relativity
(GR) has been widely applied to astrophysical compact
objects. Simulations of neutron stars and black holes [1–4]
and, very recently, scalar fields [5], have provided answers
to old questions about gravity. The success of the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism
in stabilizing error growth in numerical GR has made it a
standard by which numerical GR results are measured [6].
Further, the ability to perform fully nonlinear simulations
of GR have allowed us to better understand weak gravity,
i.e., to understand where linearized gravity is sufficient and
where it breaks down.
On the other hand, current cosmological work typically

relies on either a perturbative approach (e.g., [7,8]) or a
Newtonian gravity approximation. Such work has provided
highly precise simulations and has resolved how nonlinear
structure emerges. These simulations—as in almost all
cosmology—rely on a Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmological background. It is commonly
assumed that any subhorizon inhomogeneous structure
of the Universe will contribute to an average expansion
of the Universe on horizon-sized volumes driven by the
horizon-averaged density. When photons are propagated
through a simulated universe, they are redshifted according
to the homogeneous FLRWexpansion and corrections from
Sachs-Wolfe effects.
Such simplified assumptions have long been a matter

of concern, and have often been questioned (e.g., [9,10]).
There have been attempts to address these assumptions (e.g.,
[11–16]), although for practical reasons such work is
typically in an idealized or simplified context. The object
of this investigation is to begin to move that evaluation, and
the quantification of the consequent inaccuracy or impreci-
sion of our cosmological inferences, into a fully general-
relativistic setting. For example, most current models decou-
ple the local evolution of matter from the expansion of the

Universe due to the vast difference of scales, even though the
nonlinear nature of GR allows power to move between these
scales. Determining if a scale exists on which the expansion
of the Universe can be considered truly homogeneous,
despite local variations in curvature, is an open question.
The BSSN formalism [17,18] is a modification of the

Arnowitt-Deser-Misner Hamiltonian formalism [19] of GR
designed to improve the numerical stability of the latter by
introducing auxiliary variables. The equations that define
the BSSN formalism are nonlinear, and therefore formi-
dable to work with analytically. Nevertheless, the nonlinear
terms are few enough that—depending on gauge choice—
numerically integrating the fully unconstrained Einstein
equations does not require significantly more computing
resources than working in a linearized gravity regime.
In this Letter, we study a spacetime in which inhomo-

geneities are present at a range of scales. We set FLRW-like
initial conditions—that is, we include density inhomoge-
neities with a range of power-spectrum amplitudes on top
of a slice of the FLRW metric of constant extrinsic
curvature. We then evolve the complete BSSN dynamical
system in the full nonlinear GR framework without
assuming a background solution. As the simulation pro-
gresses, we monitor the consistency of the usual FLRW
approximation by (1) observing how well the evolution of
the fields corresponds to linearized theory, and (2) observ-
ing how well the average expansion rate corresponds to
expectations for the background. To our knowledge this is
the first simulation of its kind, i.e., the first cosmological
work that is fully nonlinear, fully relativistic, and does not
impose symmetries or dimensional reductions.
Our goal is to introduce a methodology that allows us

to model fully nonlinear gravity on cosmological scales.
We can reproduce homogeneous models of the expanding
Universe, but also see departures from homogeneity,
demonstrating that this method will lead to understanding
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the future role and need of full GR simulations for
cosmological observables.
The softwarewe have developed to simulate cosmological

scenarios in full numerical relativity, CosmoGRaPH, has passed
a standard set of tests and is able to evolve more scenarios
than those presented here. For more information about these
tests, the full implementation of our numerical method, and
future plans for using and for releasing the code, please see
our companion paper [20]. In this Letter we will focus on
the main result of these simulations: the first numerical
demonstration of an inhomogeneous, but nearly FLRW,
matter-dominated cosmological spacetime in full GR.
The BSSN formalism.—The BSSN formalism parameter-

izes the spacetime metric by

gμν ¼
�−α2 þ γlkβ

lβk βi

βj γij

�
; ð1Þ

where we generally refer to α as the “lapse,” and βi as the
“shift.” The metric is rescaled by a conformal factor, ϕ, so
that γij ¼ e4ϕγ̄ij, with detðγ̄ijÞ ¼ 1. The components of the
3-metric are then dynamically evolved for a particular
gauge choice, along with the extrinsic curvature Kij. To do
this latter part, the extrinsic curvature is decomposed into
a trace part, K, and a conformally related trace-free part,
Āij, viaKij ¼ e4ϕĀij þ 1

3
γijK, whose indices are raised and

lowered by the conformal metric.
The content of the Universe is decomposed into

ρ ¼ nμnνTμν; ð2Þ
Si ¼ −γiμnνTμν; ð3Þ
Sij ¼ γiμγjνTμν; ð4Þ

where Tμν is the stress-energy tensor, nμ ¼ ð−α; ~0Þ and
S ¼ γijSij. (For a full textbook treatment see, e.g., [21]).
The dynamical equations of motion for the metric are

determined by Einstein’s equations; however, for stability,
the auxiliary conformal connection variables Γ̄i are evolved
simultaneously to eliminate terms with mixed derivatives
when calculating the Ricci tensor. While CosmoGRaPH

allows for arbitrary lapse and shift (see [20]), in this
Letter we employ synchronous gauge (geodesic slicing).
In this gauge the lapse is a fixed constant (α ¼ 1), and there
is no shift (βi ¼ 0). The system we evolve is

∂tϕ ¼ −
1

6
K; ð5Þ

∂tγ̄ij ¼ −2Āij; ð6Þ

∂tK ¼ ĀijĀij þ 1

3
K2 þ 4πðρþ SÞ; ð7Þ

∂tĀij ¼ e−4ϕðRij − 8πSijÞTF þ KĀij − 2ĀilĀl
j; ð8Þ

∂tΓ̄i ¼ 2Γ̄i
jkĀ

jk −
4

3
γ̄ij∂jK − 16πγ̄ijSj þ 12Āij∂jϕ: ð9Þ

For a flat FLRW solution to Einstein’s equations, the
BSSNvariables can be directly translated to FLRWvariables.
The spatial metric is γFLRWij ¼ a2δij, meaning γFLRW≡
det γFLRWij ¼ a6. This relationship, along with our gauge
choice, gives us a translation between BSSN and FLRW
parameters: H ¼ − 1

3
KFLRW and a ¼ γ1=6FLRW ¼ e2ϕFLRW.

As a proxy for a universe containing matter, we source
the metric with a flux-conservative form of the relativistic
hydrodynamic equations [22]. In this Letter, we restrict
ourselves to a w ¼ 0 cosmological fluid with rest-mass
density ρ0 with no initial velocity component; the con-
tributions to the source terms are then ρ ¼ ρ0, Si ¼ 0, and
Sij ¼ 0 (and so also S ¼ 0). The equation of motion for the
matter fluid in the absence of initial velocity and for our
gauge choice is a simple conservation law,

∂t
~D ¼ ∂tðγ1=2ρ0Þ ¼ 0: ð10Þ

We evolve a finite-volume 3-torus universe with periodic
boundary conditions. We set the total volume of the
simulation such that the length of any side, L, is an
arbitrary fraction, n, of the initial cosmological horizon
in an exact FLRW solution, L ¼ nH−1

I . Working in units of
HI fixes the initial energy density of the corresponding
FLRW solution to be

ρFLRW ¼ 3

8π

�
n

NΔx

�
2

; ð11Þ

with N3 the total number of grid points in the volume and
Δx ¼ L=N the coordinate distance between points. In all of
the simulations presented in this Letter, we take n ¼ 1=2,
and our units of momentum to be Δk ¼ 2π=L.
We want to be careful about the assumptions of our toy

model. First, we utilize periodic boundary conditions as the
best choice to reproduce a statistically homogeneous uni-
verse on large scales. Such boundary conditions are common
in cosmological simulations as they introduce no numerical
effects at the boundaries (which can contaminate physics in
the light coneof such boundaries). Because our peak power is
at scales much smaller than the length of the side of the box,
we do not expect structure to form at wavelengths where
periodic effects are significant. For the time being we also
chose two simplifying assumptions about the matter source:
its power spectrum and its equation of state. While these are
approximations, they should be sufficiently close to our
Universe to yield a reasonable first result (the majority of the
energy density of the Universe that contributes to the
generation of structure is collisionless, pressureless matter).
The initial power spectrum, while only an approximation, is
sufficient to show that nonlinear effects are relevant.
Initial conditions.—The initial surface from which we

evolve should satisfy the Hamiltonian and momentum
constraint equations
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H≡ γ̄ijD̄iD̄jeϕ−
eϕ

8
R̄þe5ϕ

8
~Aij

~Aij−
e5ϕ

12
K2þ2πe5ϕρ¼ 0

ð12Þ
and

Mi ¼ D̄jðe6ϕ ~AijÞ − 2

3
e6ϕD̄iK − 8πe10ϕSi ¼ 0: ð13Þ

For a FLRW solution, the Hamiltonian constraint is one of
the Friedmann equations, and all terms in the momentum
constraint equation are zero.
Solving Eqs. (12) and (13) for an arbitrary matter source

does not uniquely specify a spatial metric; unconstrained
degrees of freedom remain. Making choices that simplify
the constraint equations, such as using the conformal
transverse-traceless decomposition, can make finding an
initial surface easier. Rather than attempting to set initial
conditions that perfectly mimic our Universe, we opt to
obtain a simple solution to Eq. (12) that is approximately a
power law in momentum space at large and small wave
vector k, and peaks at a desired scale.
We first specify an extrinsic curvature (akin to the

Hubble parameter) approximately determined by the
average density, corresponding to a FLRW background.
We then introduce fluctuations in the matter field and
conformal factor, approximately setting the matter density
power spectrum up to that conformal factor. At large scales
(small k) the matter power spectrum we choose scales as
Pk ∝ k, and at small scales (large k) as Pk ∝ k−3 [23].
Given a peak scale k� and corresponding peak amplitude
P�, the conformally related matter power spectrum (and
approximate matter power spectrum) is then

Pρ
k ¼

4P�
3

k=k�
1þ 1

3
ðk=k�Þ4

: ð14Þ

Again, note that this is not intended to perfectly represent
our Universe, and issues of gauge and conformal rescalings
have not been addressed. Also significantly, we introduce a
cutoff kcutoff in order to reduce fluctuations on scales where
grid effects become important, so that fluctuations are
resolved by sufficiently many points. The spectrum is cut
using a sigmoid,

Pcutoff
k ¼ 1

1þ exp ½10ðk − kcutoffÞ�
Pk: ð15Þ

In this Letter we take kcutoff to be 10Δk so that on a N3 ¼
1283 grid we resolve the shortest wavelengths with 12 grid
points for our initial conditions. We find excessive con-
straint violation for larger cutoffs [20].
We construct the initial metric by decomposing ρ into ρK ,

which sources the trace of the extrinsic curvatureK, and ρψ ,
which sources the conformal factorψ ≡ eϕ. The total density
is ρ ¼ ρK þ ρψ . We use a conformally flat metric (γ̄ij ¼ δij)
and set the trace-free part of the extrinsic curvature to zero,
leaving us with two simpler equations to solve,

∇2ψ ¼ −2πψ5ρψ ; ð16Þ

K ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
24πρK

p
: ð17Þ

Here we choose K to be constant on the initial slice. The
equation for ψ is then difficult to solve for a fixed matter
source, with attempted relaxation and iterative solution
methods tending to find the ψ ¼ 0 solution. We therefore
create a Gaussian-random realization of the field ψ with a
power spectrumPψ

k ¼ Pρ
k=k

4, and then solve for ρ. Note that
ρK is not necessarily the average density, as ρψ can have
nonzero average (although the average of ψ5ρψ must be zero
for periodic boundary conditions).
In more conceptual terms, we parameterize the spatial

distortion of the metric at each point in terms of two
parameters. ϕ holds information about the volume at that
point, γ1=2 ¼ e6ϕ;K encodes the rate at which that volume is
changing, γ−1=2dγ1=2=dt ¼ 3K. For a given distribution of
matter ρ, one has physical (not just gauge) freedom to choose
a specific solution for the (initial) values of ϕ and K. In the
FLRW limit, ϕ increases monotonically, and ϕ − ϕinitial
corresponds to half the number of elapsed e foldings,
aFLRW ¼ e2ϕFLRW. We therefore use the spatial average value,
ϕ̄, as a proxy for time in most of our plots. This is certainly a
good choice if we are close to the FLRW solution.We define
the average to be taken on the constant program-time
hypersurfaces (defined as t ¼ const). These are not physi-
cally important hypersurfaces (see [24,25] for discussions
on the effects of choosing hypersurfaces when defining
averages); however, they do approach the standard FLRW
constant-time hypersurfaces in a homogeneous universe.
We have examined the accuracy of our model by looking

at how well we satisfy the two main constraint equations.
Numerically, we employ a diffusive term [26] to reduce the
amount of constraint violation, although it has no signifi-
cant effect on the quantities of interest in the short term.
Details can be found in [20].
Results.—Having set initial conditions describing a

universe expanding at a constant rate across a set of points,
each representing slightly different volumes, we can
address how well FLRW quantities are recovered in our
analysis. To test this we compare the average value of K
and ρ. In an exact FLRW universe, K ¼ −

ffiffiffiffiffiffiffiffiffiffi
24πρ

p
. We have

chosen a large amplitude of inhomogeneity σρ=ρ, but one
low enough that no point has ρ < 0 in the initial conditions.
In the code we set a value of P� that maps directly to the
variation of the density parameter, σρ=ρ̄. Figure 1 shows
that for σρ=ρ̄ ¼ 0.05, we see excellent agreement with
FLRW cosmology for averaged quantities.
If inhomogeneities are important in our volume, we

expect that varying σρ=ρ̄ should induce increasingly
important variations in K. Figure 2 shows the reaction
of the simulation to values of σρ=ρ̄ between ∼2% and 10%.
We see that σK=K̄ grows over the course of the simulations.
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Although introducing the numerical method and dem-
onstrating its robustness is the main result of this Letter, we
note that our simulations go beyond a linear approximation;
even for relatively small variance in the matter field,Oð5%Þ
deviations from linear expectations emerge. This is clear in
Fig. 2 (right panel), which shows how the local response to
the metric is related to local over- and underdensities.
While we have not yet demonstrated exactly how and if
our simulations differ from fully nonlinear Newtonian
simulations, we have produced a result that goes beyond
perturbative relativistic analyses.
We can attach some intuition to this result. We can

analytically predict the metric to linear order in perturba-
tions δK and δρ around average quantities ρ̄ and K̄, by
writing down the evolution equations

∂tδρ ¼ ρ̄δK þ K̄δρ; ð18Þ

∂tδK ¼ 2

3
K̄δK þ 4πδρ: ð19Þ

These are simple ordinary differential equations and remind
us of those in standard cosmological perturbation theory in

synchronous gauge; see, e.g., [27] where the authors use _h
as the extrinsic curvature, δK ¼ − _h=2, and δ for the density
contrast, δ ¼ δρ=ρ. Indeed, so long as any contribution
from ~Aij

~Aij is negligible, even the full evolution equations
for ρ and K remain a set of ordinary differential equations
that can be integrated easily. The dashed lines in the right
panel of Fig. 2 show the behavior of solutions to these
equations for our initial conditions. The curves show that
the response of the metric is centered about the linear-order
predicted value, but exhibit noticeable deviations from it.
While we have so far demonstrated that we generate

variations of the extrinsic curvature, K, from point to point,
we would like to conclude by performing an additional test.
One of the main predictions of a FLRW universe is that any
path on a constant t surface (nomatter the shape) has a proper
length that scales with the scale factor of the Universe. Here,
we examine whether the expansion of the Universe deviates
from this expectation. We will define a set of arbitrary paths
on our constant t hypersurfaces. If we calculate the proper
length of these paths and track the ratio of these lengths as a
function of time, we can tell whether we are truly seeing
deviations from FLRW behavior. Figure 3 shows that the
growth of the proper length of these paths depends on the
length of the path (and not just some scale factor, a). Further,
Fig. 3 suggests that this departure is more important at
smaller distances than at larger distances.
There is a remaining question of gauge associated with

Fig. 3, as gauge-dependent metric fluctuations can mimic a
departure from a homogeneous source. Although we do not
compute gauge-independent quantities, the density fluctu-
ations we compute in synchronous gauge will nevertheless
source quantities such as optical scalars. Thus, examining
path lengths in our spacetimes can provide some intuition
into the behavior of observable quantities (details of which
we leave for a future study). Here we simply draw a
connection to intuition, which suggests that distances of

FIG. 1. A comparison of the average value of K for three
different resolutions (643 red, 1283 green, and 2563 yellow)
versus the average value of the conformal factor, ϕ̄. This
simulation has inhomogeneities with σρ=ρ̄ ¼ 0.05.

FIG. 2. The left panel shows variations in the extrinsic curvature, σK=K̄, versus variations in σρ=ρ̄ over the course of a number of runs.
The initial σρ=ρ̄ for these runs were σρ=ρ̄ ¼ 0.009, 0.0133, 0.019, 0.027, 0.038, 0.053, 0.076, and 0.107 from bottom to top, or blue to
red. The right panel shows the relationship between fluctuations in matter density and extrinsic curvature at ϕ̄ ¼ 0.5 (one e fold) as
differences from a linear approximation. The dashed line represents the linear-order analytic solution and the solid line shows the
solution excluding ~Aij

~Aij contributions. We superimpose a histogram showing all points from a simulation corresponding to an
intermediate value of inhomogeneity, σρ=ρ̄ ¼ 0.038, where blue bins contain relatively few points and red bins contain many points. We
see local violations of the linear-order approximation of Oð5%Þ.
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paths with lengths comparable to the Hubble scale should
scale as they would in FLRW due to the expansion of the
Universe being driven by average quantities. If this were
true, the longest paths in Fig. 3, which are approximately
half a Hubble length, H−1=2, would not diverge from the
FLRW expectation. We indeed see longer paths more
closely following FLRW behavior; however, we also see
a departure from FLRW behaviors for individual paths.
Discussion.—We have seen that the conformal factor

varies on subhorizon scales. These local variations indicate
that nonlinear gravitational effects are present on cosmo-
logical scales. While this should not be surprising, this is
the first quantified study of the expansion of an inhomo-
geneous matter-dominated spacetime within a full, uncon-
strained general relativistic framework. Our companion
paper [20] provides further details on our numerical
methods and the tests to which we have subjected our
code, CosmoGRaPH. In future work we expect to report on
improved code performance near FLRW solutions, and to
quantify the effects on standard physical observables, such
as how photons respond to nonlinear gravitational effects in
an inhomogeneous universe.
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