PRL 116, 250501 (2016)

PHYSICAL REVIEW LETTERS

week ending
24 JUNE 2016

Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates

Sergey Bravyi' and David Gosset®
'IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
*Walter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, California 91125, USA
(Received 9 March 2016; published 20 June 2016)

We present a new algorithm for classical simulation of quantum circuits over the Clifford 4 T' gate set.
The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the
circuit but exponential in the number of 7' gates. The exponential scaling is sufficiently mild that the
algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates.
The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be
dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our
algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be
simulated by other means. To demonstrate the power of the new method, we performed a classical
simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50

T gates.
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The path towards building a large-scale quantum com-
puter will inevitably require verification and validation of
small quantum devices. One way to check that such a
device is working properly is to simulate it on a classical
computer. This becomes impractical at some point because
the cost of classical simulation typically grows exponen-
tially with the size of a quantum system. With this
fundamental limitation in mind it is natural to ask how
well we can do in practice.

Simulation methods which store a complete description
of an n-qubit quantum state as a complex vector of size 2"
are limited to a small number of qubits n = 30 — 40. For
example, a state-of-the art implementation has been used to
simulate Shor’s factoring algorithm with 31 qubits and
roughly half a million gates [1]. Using distributed compu-
tation it is possible to simulate 40 qubit circuits [2]. For
certain restricted classes of quantum circuits it is possible to
do much better [3—7]. Most significantly, the Gottesman-
Knill theorem allows efficient classical simulation of
quantum circuits composed of gates in the so-called
Clifford group [3]. In practice this allows one to simulate
such circuits with thousands of qubits [1,4]. It also means
that a quantum computer will need to use gates outside of
the Clifford group in order to achieve useful speedups over
classical computation. The full power of quantum compu-
tation can be recovered by adding a single non-Clifford gate
to the Clifford group. A simple choice is the single-qubit
T = [0){(0| + e/4|1)(1| gate. The Clifford + T gate set
obtained in this way is a natural instruction set for small-
scale fault-tolerant quantum computers based on the sur-
face code [8,9], and has been at the center of a recent
renaissance in classical techniques for compiling quantum
circuits [10-12].
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When it comes to realizing a logical (encoded) circuit,
non-Clifford gates pose a serious challenge for any fault-
tolerant scheme based on 2D stabilizer codes [8,13] due to
the lack of topological protection [14,15]. Such non-
Clifford gates can be implemented fault-tolerantly using
special single-qubit resource states known as magic states
[16]. The magic states must themselves be prepared using a
fault tolerant protocol for “magic state distillation” [16],
which is relatively resource intensive. For example, in the
case of the surface code, the overhead associated with
logical T gates exceeds that of any logical Clifford gate by
orders of magnitude [17,18]. Thus it is likely that the first
logical circuits demonstrated in the lab will be Clifford + T
circuits dominated by Clifford gates. In this Letter we
propose a new algorithm for classical simulation of such
circuits. Our algorithm could therefore serve as a verifica-
tion tool for near-term quantum computers.

Let us now state our results. A Clifford + 7" quantum
circuit of length m acting on n qubits is a unitary operator
U=U,-- UyU,, where each U; is a one- or two-qubit
gate from the set {H, S, T,CNOT}, where

H_1<11> S_<1o> T_(l o>
2\ =) ~\o i) —\0 et )’

and CNOT = |0)(0| ® I +|1)(1| ® X is the controlled-
NOT gate. We shall write m = ¢ + ¢, where c¢ is the number
of Clifford gates (H,S,CNOT) and 7 is the number of T
gates also known as the 7' count. Applying U to the initial
state [0®") and measuring some fixed output register
Oout € {1, ...,n} in the 0,1 basis generates a random bit
string x of length w = |Q|. A string x appears with
probability
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Poy(x) = (0%"|UTTI(x)U|0®"), (1)

where I1(x) projects Q,, onto the basis state |x) and acts
trivially on the remaining qubits.

Our main result is a classical algorithm for sampling the
output string x from a distribution which is e-close to P,
with respect to the L; norm. The algorithm has runtime

t=0wWw+1)(c+1) +wn+1)3 +2"Pwe™),  (2)
where
y < —2log,[cos (7/8)] = 0.228 (3)

is a constant that depends on the implementation details.
Note that the runtime scales polynomially in all parameters
except for the 7 count. We expect the algorithm to be
practical when the size of the output register w is small and
the precision € is not too small. For example, assuming that
the circuit outputs a single bit (w = 1), € is a fixed constant,
and ¢t < n < ¢, the runtime becomes

7= 0(n®+ ct +2"'7).

The algorithm can be divided into independent subroutines
with a runtime O(#*) each and thus supports a large amount
of parallelism. We provide pseudocode for the main steps
of the algorithm in the Supplemental Material [19].

Since the simulation runtime is likely to be dominated by
the term exponential in ¢, one may wish to minimize the
exponent y in Eq. (2). This exponent is related to the
stabilizer rank [20] of 7-qubit tensor product states |A®?),
where |A) is a “magic state”

|A) = 2712(|0) + e "/41)).

Recall that a z-qubit state is called a stabilizer state if it has
the form V|0®"), where V is a quantum circuit composed of
Clifford gates. Stabilizer states form an overcomplete basis
in the Hilbert space of 7 qubits. Let y,(5) be the smallest
integer y such that |[A®’) can be approximated with an
error at most 6 by a linear combination of y stabilizer
states (here the approximating state |y) should satisfy
|(A®|y)|> > 1 — §). The runtime scaling in Eq. (2) holds
for any exponent y such that y,(6) = O(2") for any
constant 6 > 0 and all sufficiently large ¢. For simplicity
here we assumed that the precision parameter € in Eq. (2) is
a constant. Below we propose a systematic method of
finding approximate stabilizer decompositions of |A®")
which yields an upper bound y,(5) = O(2"57!), where
y =~ 0.228, see Eq. (3). We conjecture that this upper bound
is tight.

We implemented our classical sampling algorithm in
MATLAB and used it to simulate a class of benchmark
quantum circuits on n = 40 qubits, with a few hundred

Clifford gates, and T count ¢ <48. Specifically, we
simulated a quantum algorithm which solves the hidden
shift problem [21] for non-linear Boolean functions [22].
An instance of the hidden shift problem is defined by a pair
of oracle functions f, f':F; — {£1} and a hidden shift
string s € 5. It is promised that f is a bent (maximally
nonlinear) function, that is, the Hadamard transform of f
takes values 1. It is also promised that f” is the shifted
version of the Hadamard transform of f, that is,

flx@s) =272 (=1 f(y) forallxeFs.  (4)

yeF;

Here @ stands for the bitwise exclusive OR gate. The goal
is to learn the hidden shift s by making as few queries to f
and f” as possible. The classical query complexity of this
problem is known to be linear in n, see Theorem 8§ of
Ref. [22]. In the quantum setting, f and f’ are given as
diagonal n-qubit unitary operators Oy and Oy such that
O¢lx) = f(x)|x) and Op|x) = f'(x)|x) for all x € F;. A
quantum algorithm can learn s by making a single query to
each of these oracles, as can be seen from the identity [22]
|s) = U|0®"), U=H®"0pH®"OH®". (5)
This hidden shift problem is ideally suited for our bench-
marking task for two reasons. First, the algorithm produces
a deterministic output, i.e., the output is a computational
basis state |s) for some n-bit string s. Because of this we
achieve the most favorable runtime scaling in Eq. (2) since
each bit of s can be learned by calling the sampling
algorithm with a single-qubit output register (w = 1) and
a constant statistical error €. Second, the T count of the
algorithm can be easily controlled by choosing a suitable
bent function. Indeed, the non-Oracle part of the algorithm
consists only of Hadamard gates. We show that for a large
class of bent functions f (from the so-called Maiorana-
McFarland family) the oracles O; and O can be con-
structed using Clifford gates and only a few T gates.
The numerical simulations were performed for two
randomly generated instances of the hidden shift problem
with n =40 qubits. For each of these instances we
simulated the quantum circuit for the hidden shift algo-
rithm, i.e., the circuit implementing the unitary U described
above. The T counts of the two simulated circuits are
t =40 and ¢ = 48, respectively. Since the hidden shift s is
known beforehand, we are able to verify correctness of the
simulation. Our results are presented in Fig. 1. As one can
see from the plots, the output probability distribution of
each qubit has most of its weight at the corresponding value
of the hidden shift bit. Only the output probabilities for
qubits 21,22, ...,40 are shown because our algorithm
perfectly recovered the first half of the hidden shift bits
1,2,...,20. This perfect recovery occurs due to the
special structure of the chosen bent functions. Further
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FIG. 1. Output single-qubit probability distributions obtained by a classical simulation of the hidden shift quantum algorithm on
n = 40 qubits. Only one half of all qubits are shown (qubits 21,22, ..., 40). The final state of the algorithm is |s) = U|0®"), where s is
the hidden shift string to be found and U is a Clifford + 7T circuit with the 7 count ¢ = 40 (left) and ¢ = 48 (right). In both cases the
circuit U contains a few hundred Clifford gates. For each qubit the probability of measuring “1” in the final state is indicated in blue. The

x-axis labels indicate the correct hidden shift bits. The entire simulation took several hours on a laptop computer.

implementation details can be found in Section IV of the
Supplemental Material [19].

Let us now describe two main ingredients of our
sampling algorithm. The first ingredient is a subroutine
for estimating the norm of a linear combination of stabilizer
states. It takes as input a 7-qubit state |¢), a target error
parameter € > 0, and a failure probability p . The state |¢)
is given as a linear combination of y stabilizer states,

X
|¢> = Zza|¢a>v $. € Sr
a=1

Here S, is the set of all 7-qubit stabilizer states. The
subroutine computes a real number & which, with proba-
bility at least 1 — p, approximates the norm |||¢)]|* with
relative error e. It has running time O(yr’¢>p;'). This
improves upon the brute force method which has bomplex—
ity O(y*t%). The key idea is to approximate |||¢)||> by
computing inner products between |¢) and randomly
chosen stabilizer states. Let |§) € S, be a random stabilizer
state drawn from the uniform distribution. Define expect-
ation values
M, =Eyl(0¢)* and M, =Ey|(0]¢)]*.

The set S, is known to be a 2-design [23]. This implies that
one may compute M, and M, by pretending that |@) is

drawn from the Haar measure. Standard formulas for the
integrals over the unit sphere yield

2 4
and M4:M, where d=2'. (6)

d(d+1)

ey

M
2 d

Suppose |0;), ...,|0,) € S, are random independent stabi-
lizer states. Define a random variable

L

e= IS o) 7)

i=1

From Eq. (6) one infers that the expected value of & is
E=FE(&) = |||¢)||* and the standard deviation of ¢ is

d—1
L7 21l) I

c= \/dzL—l(M4—M§) =\t

For large ¢ one has o~ L™'/?|||¢)||>. By the Chebyshev

-1/2

inequality, Pr[|& — &| > p; o] < ps. Thus

(I=elllAl* <& < (L+ellAl?

with the probability of at least 1— p, provided that
L = py'e. The inner product between any -qubit stabi-

lizer states can be computed classically in time O(#*), see
Refs. [20,24]. The inner product (0;|¢p) = > *_, z,(0:|¢.)
in Eq. (7) can be computed in time O(y#*) since |6;) and
|p,) are stabilizer states of ¢ qubits. Thus we compute an
approximation to |||¢)[|* in time O (y’e~*p7"'). We antici-
pate that the above norm estimation method can be
generalized to stabilizer states of qudits of prime dimension
[25] and fermionic Gaussian states [26].

The second ingredient of our simulation algorithm is a
method for computing approximate stabilizer decomposi-
tions of |A®"). The magic state |A) is equivalent to a state
|H) = cos(z/8)|0) + sin(z/8)[1) modulo Clifford gates
and a global phase, |[A) = e”/3HSt|H). Thus it suffices
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to consider approximate stabilizer decompositions of
|H®'). We have the identity

1

) = (zyy;zlil ®L® ®%)  (8)
where |0) =0), |1) = H|0) =2""/2(]0) 4 [1)), and

v = cos(z/8). The right-hand side of Eq. (8) is a uniform
superposition of 2’ nonorthogonal stabilizer states labeled
by elements of the vector space [F). We construct an
approximation |w) which is a uniform superposition of
states |X; @ X, ® --- ® X,) over a linear subspace of Fj.
The dimension k of this subspace is chosen to be the unique
positive integer satisfying 4 > 225 > 2, where § is the
error tolerance. For any k-dimensional subspace £ of [, we
define a normalized state

L) SEH®nLe %) (9

1
V22L) &

where Z(£) =", ,27/2. Here | - | denotes the Hamming
weight of a bit string. A simple computation shows that | L)
approximates |H®') with error

2ky2t

S(L)=1-|(H®|L)? = 1 -2

(10)

The error §(£) can be computed in time O(#2%) since Z(L)
contains 2¢ terms. In Section III of the Supplemental
Material we show that by choosing O(1/5) k-dimensional
subspaces £ uniformly at random we obtain at least one
subspace L* such that §(L*) < § with high probability. We
conclude that |(y|A®")|? > 1 — &, where |y) = (HST)®'|L*)
is a linear combination of y = 2F = O(v=2'§7!) stabilizer
states. Computing the approximation |y) takes time
O(v=?'t57%). We will see that this is negligible compared
with the overall runtime Eq. (2) of the sampling algorithm.

We are now ready to describe the algorithm for sampling
from a distribution e-close to P,. For simplicity here we
restrict our attention to the case when the output register
consists of a single qubit (w = 1). We first transform the
Clifford + T circuit to be simulated by replacing each T
gate by a certain well-known gadget [27], shown in Fig. 2,
that contains only Clifford gates and a 0,1 measurement.
The S gate is classically controlled by the measurement
outcome. The gadget consumes one copy of the magic state
|A). This gives an equivalent “gadgetized” circuit consist-
ing of Clifford gates and ¢ single-qubit measurements,
acting on a nonstabilizer initial state that contains ¢ copies
of |A). Let V, be the Clifford circuit on n + ¢ qubits
corresponding to measurement outcomes described by a
£-bit string y = y;y,,...,y,. Bach gadget with y; =0
contributes a CNOT gate to V,, whereas each gadget with
y;j = 1 contributes a cNOT and the § gate to V. Thus V,

contains ¢ + ¢ + |y| gates. Since the gadgetized circuit is
equivalent to the original Clifford + 7T circuit, we have

(02" @ A®|Vi(II(x) ® |y) (y)V,[0®" ® A®)
(02" @ A®|V(, ® [y) () V,]0®" ® A®")
(11)

Poy(x) =

’

for any measurement outcomes y. Let |w) be a linear
combination of y = O(v=257!) stabilizer states con-
structed above such that |(y]A®")|> > 1 —§5. Replacing
|A®") by its approximation |y) in Eq. (11) we are led to
consider a distribution

(0%" @ y|Vi(II(x) ® |y)(y)V,]0®" ® w)
(08" @ w|Vi(l, ® |y)(y)V,|0®" @ y)

Pgut(x) =
(12)

This distribution will in general depend on y since |y) is not
exactly equal to |A®"). In Section II of the Supplemental
Material we show that

provided that § = O(e?). This shows that we may approx-
imately sample from P, [with error O(¢)] by first
selecting a z-bit string y uniformly at random and then
approximately sampling from P, [with error O(e)]. It
remains to show how to approximately sample from P}
for a fixed y. Since the gadgetized circuit V, contains only
Clifford gates we may use the standard Gottesman-Knill
theorem to compute z-qubit stabilizer groups G, H and
integers u, v such that

1 ,
E Z Pf)ut<x> - Pout(x)
1

ye{0,1}

= 0(¢)

(02" ® w|V3(I1(0) ® |y) (¥))V,[0®" ® y) = 27 (w|Igly)
(13)

(08" @ w|Vi(TI(1) @ [y) (y)V,|0%" @ y) = 27" (w|ITy )
(14)

where Ilg, Il are projectors onto the code space of
stabilizer codes defined by G, H. This computation, which
is described in more detail in Sections I, II of the
Supplemental Material, takes time

71 =0(tlc+ 1) + (n+1)3).
Since we are considering the case where the output string x

is a single bit, the output probability distribution is
{Pgut(o)’ 1- Pﬁut(o)}, where
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—ATH+H =

FIG. 2. The T-gate gadget. The Clifford gate S is classically
controlled by the measurement outcome.

27"y |Tgly) .
27 (y [Ty |yr) + 27"y [Tgly)

Pgut(o) = (15)

We compute the expectation values in Eq. (15) with a small
relative error using the norm estimation subroutine
described above. Indeed, since the projector Il; maps
stabilizer states to stabilizer states, one can represent
Ig|y) as a linear combination of y = O(v~*¢2) stabilizer
states. Thus one can estimate (y|Ig|y) = ||[Tg|y)||*> with a

relative error O(e) and a failure probability O(¢) in time
7, = O(yt’e™®) = O(v2'Pe™).

Let & =27"(y[gly) (1 +¢) and & = 27" (w[Ily|y) (1 + €)
be the resulting approximations. The final step in the
algorithm is to sample a bit from the probability distribution
{Po. 1= po} where py=¢&/(&+¢&) [cf. Eq. (15)]. The
approximation guarantees for £ & ensure that this distri-
bution is O(e)-close to P, The total runtime of the
algorithm is 7; 4 7, from which we recover the w = 1 case
of Eq. (2).

Whereas here we focused on the case w =1, in
Section II of the Supplemental Material we describe the
simulation algorithm for arbitrary w. Although this algo-
rithm can be used for sampling from the output distribution
with a small statistical error, in general it cannot accurately
compute individual probabilities of the output distribution.
In the Supplemental Material we also present a different
algorithm which uses similar techniques to compute the
output probabilities P, (x) with a relative error e.
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