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In recent experiments with ion traps, long-range interactions were associated with the exceptionally fast
propagation of perturbation, while in some theoretical works they have also been related with the
suppression of propagation. Here, we show that such apparently contradictory behavior is caused by a
general property of long-range interacting systems, which we name cooperative shielding. It refers to
shielded subspaces that emerge as the system size increases and inside of which the evolution is unaffected
by long-range interactions for a long time. As a result, the dynamics strongly depends on the initial state: if
it belongs to a shielded subspace, the spreading of perturbation satisfies the Lieb-Robinson bound and may
even be suppressed, while for initial states with components in various subspaces, the propagation may be
quasi-instantaneous. We establish an analogy between the shielding effect and the onset of quantum Zeno
subspaces. The derived effective Zeno Hamiltonian successfully describes the short-ranged dynamics
inside the subspaces up to a time scale that increases with system size. Cooperative shielding can be tested
in current experiments with trapped ions.
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Introduction.—A better understanding of the nonequili-
brium dynamics of many-body quantum systems is central to
a wide range of fields, from atomic, molecular, and con-
densed matter physics to quantum information and cosmol-
ogy. New insights into the subject have been obtained thanks
to the remarkable level of controllability and isolation of
experiments with optical lattices [1–7] and trapped ions
[8,9]. Recently there has been a surge of interest in the
dynamics of systems with long-range interactions, triggered
by experiments with ion traps [8,9], where the range of
interactions in one-dimensional (1D) spin models can be
tuned with great accuracy. Other realistic systems that
contain long-range interaction include cold atomic clouds
[10], natural light-harvesting complexes [11–13], helium
Rydberg atoms [14], and cold Rydberg gases [15]. Long-
range interacting systems display features that are not often
observed in other systems, such as broken ergodicity
[16–19] and long-lasting out-of-equilibrium regimes [20].
According to the usual definition [21], in d dimension,

an interaction decaying as 1=rα (where r is the distance
between two bodies), is short range when α > d and is long
range when α ≤ d. A major topic of investigation has been
whether the propagation of excitations in systems with
long-range interaction remains confined or not to an
effective light cone [22–30], as defined by the Lieb-
Robinson bound [31] and its generalizations ([30] and
references therein). In the aforementioned experiments with
trapped ions, it was observed that for short-range inter-
action, the propagation of perturbation is characterized by a

constant maximal velocity, being bounded to an effective
light cone. As α decreases, the propagation velocity
increases and eventually diverges. For long-range inter-
action, α < 1, the light-cone picture is no longer valid and
the dynamics becomes nonlocal. However, examples of
constraint dynamics in long-range interacting systems have
also been reported, including logarithmic growth of entan-
glement [23], light-cone features [30], self-trapping [32],
and slow decays at critical points [33].
Here, we show that these contradictory results are due to

a general effect present in long-range interacting systems,
which we name cooperative shielding. It corresponds to the
onset of approximate superselection rules that cause a
strong dependence of the dynamics on the initial state.
Inside a superselection subspace, long-range interactions
do not affect the system evolution (shielding) up to a time
scale that grows with system size (cooperativity). The
dynamics can then be described by an effective short-
ranged Hamiltonian that either leads to a propagation
within the Lieb-Robinson light cone or to localization.
In contrast, for an initial state with components over several
subspaces, the propagation of excitations is affected by
long-range interactions and can be unbounded.
To explain how shielding can arise in a very trivial case,

let us consider the total HamiltonianH ¼ H0 þ V, describ-
ing a many-body quantum system, where H0 has one-body
terms and possible short-range interactions, and V corre-
sponds to some additional interactions. If ½H0; V� ¼ 0 and
V is highly degenerate in one of its eigensubspaces V, so
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that VjVki ¼ vjVki for all jvki ∈ V, the evolution of any
initial state jψ0i belonging to such eigensubspace is simply
given by: jψðtÞi¼e−ivt=ℏe−iH0t=ℏjψ0i. Since the only effect
of V is to induce a global phase, the dynamics is shielded
from V and determined only byH0. In contrast, if the initial
state has large components in more than one eigensubspace
of V, the dynamics will not be shielded from V. The
question that we now pose is whether shielding is still
possible when ½H0; V� ≠ 0 and V is no longer degenerate.
We show that the answer is positive when V involves only
long-range interactions. The dynamics can remain shielded,
but now for a finite time that increases with system size.
One can also draw a parallel between the picture above

and the quantum Zeno effect (QZE). In the QZE, the
dynamics of the system remains confined to subspaces
tailored by the interaction with a measuring apparatus
[34–38]. The stronger the interaction is, the better defined
the subspaces become. Here, instead, the interaction strength
is kept fixed, but due to its long-range-nature, invariant
subspaces are generated. The dynamics, restricted to the
invariant subspaces, is described by a short-ranged Zeno
Hamiltonian up to a time scale that diverges with system size.
The model.—We consider a 1D spin-1=2 model with L

sites and open boundary conditions described by the
Hamiltonian,

H ¼ H0 þ V;

H0 ¼
XL

n¼1

ðB þ hnÞσzn þ
XL−1

n¼1

Jzσznσ
z
nþ1;

V ¼
X

n<m

J
jn −mjα σ

x
nσ

x
m: ð1Þ

Above, ℏ ¼ 1 and σx;y;zn are the Pauli matrices on site n. The
transverse field has a constant component B and a random
part given by hn, where hn ∈ ½−W=2;W=2� are random
numbers from a uniform distribution. The nearest-neighbor
(NN) interaction in the z direction, of strength Jz ≥ 0, may
or not be present. J is the strength of the interaction in the x
direction with α determining the range of the coupling.
Unless specified otherwise, J ¼ 1. The Hamiltonian with
W ¼ 0 and Jz ¼ 0 describes the systems studied with ion
traps [8,9]. In agreement with those experiments, where a
limited range of system sizes is explored, V is not rescaled
by L.
When α ¼ 0, H can be written in terms of the total x

magnetization, Mx ¼
P

L
n¼1 σ

x
n=2, as

H ¼
XL

n¼1

ðB þ hnÞσzn þ
XL−1

n¼1

Jzσznσ
z
nþ1 þ 2JM2

x −
JL
2
: ð2Þ

The spectrum of V for α ¼ 0 is divided into energy bands,
each one associated with a value of the collective quantity
M2

x. Each band, with energy Eb ¼ 2JðL=2 − bÞ2 − JL=2,
has states with b and L − b excitations, where b ¼ 0;
1;…; L=2. For instance, b ¼ 1 corresponds to states with

one spin pointing up in the x direction in a background of
down-spins and vice-versa. An energy band contains 2ðLbÞ
degenerate states if b < L=2 and ðLbÞ states when b ¼ L=2.
For 0 < α < 1, the subspaces of V are still separated in
energy bands, but the states in each band are not all
degenerate anymore. For α > 1, the subspaces may overlap
in energy.
Light cones.—In Refs. [8,9], the acceleration of the

spreading of excitations and eventual surpassing of the
Lieb-Robison bound achieved by decreasing α was verified
for initial states corresponding to eigenstates of H0, where
each site had a spin either pointing up or down in the z
direction. These initial states have components in all
subspaces of V.
Motivated by the special role of the x direction in Eq. (2)

and to show the main features of cooperative shielding,
here we change the focus of attention to initial states with
spins aligned along the x axis. They are the eigenstates of V
and are denoted by jVki. In Fig. 1, we show the evolution of
the spin polarization, hσxnðtÞi, for an initial state where all
spins point up in x, except for the spin in the middle of the
chain, which points down, so Mx ¼ L=2 − 1 and b ¼ 1.
In Fig. 1(a), where the interaction is short range (α ¼ 3),

H0 effectively couples states belonging to different sub-
spaces of V. The effects of both H0 and V lead to the
evident light cone. This is no longer the case for long-range
interaction (α < 1), as exemplified in Figs. 1(b) and 1(c) for
α ¼ 0 and 0.5. Their dynamics is frozen for a long time,
which increases with the range of the interaction [compare
the time scales in (b) and (c)] and with the system size (see
the discussion below). The long-time localization of spin
excitations in Figs. 1(b) and 1(c) is caused by both
combined factors: the separated energy bands of V and

FIG. 1. Density plots for the evolution of hσxnðtÞi; L ¼ 13;
B¼1=2; W ¼ 0. Initial state: hσx7ð0Þi¼−1 and hσxn≠7ð0Þi ¼ þ1.
A light cone typical of short-range interaction is seen in (a), as
expected, but also in (d)–(f) where the evolution is shielded from
the present long-range interaction. Freezing occurs for very long
times in (b); it also happens in (c) where the bands of V are not
degenerate.
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the absence of direct coupling within the band (H0 is not
effective and Jz ¼ 0). Notice that the energy bands for case
(c) are no longer degenerate, yet localization persists for a
long time.
Since the initial state is not an eigenstate of the total

Hamiltonian, the spin excitation does eventually spread and
the spins reverse their signs (see Figs. 1(b) and 1(c) at long
times and discussion in [39]). This magnetic reversal can be
explained in terms of macroscopic quantum tunneling [17].
While for α < 1 in the presence of an external field the

dynamics is frozen, the addition of NN interaction (Jz ≠ 0)
restores the propagation of perturbations [Figs. 1(d)–1(f)].
Despite the existence of long-range interactions, the evo-
lution can be described by an effective short-ranged
Hamiltonian, as we show below. This is the hallmark of
the cooperative shielding effect discussed in this work, the
suppression of propagation [Figs. 1(b) and 1(c)] being only
a special case of it.
In Figs. 1(d)–1(f), a light cone typical of short-range

interactions emerges: the dynamics is independent of system
size and of the long-range coupling J. In Fig. 1(f), J is twice
as large as in Figs. 1(d) and 1(e), but the results in the three
panels are very similar, apart from border effects. The
propagation of excitations depends only on Jz up to long
times. This shielded evolution occurs for any α<1 (see more
figures in [39]). In the case of 0 < α < 1, as in Figs. 1(e) and
1(f), the bands of V are no longer degenerate, so the various
eigenstates of V that are excited within the band have
different eigenenergies. One could then expect V to affect the
evolution, yet the velocity of propagation remains indepen-
dent of V for long times. This shows that the cause for
shielding is not only the suppression of the transitions
between different bands of V, but also the narrow distribu-
tion of the energies of V inside the band. The motion remains
constrained to subspaces that are quasidegenerate with
respect to V. The emergence of quasiconstants of motion
is recurrent in long-range interacting systems [20].
Invariant subspaces and the Zeno effect.—Stimulated by

the results of Fig. 1, we now analyze in more detail the
effects of infinite-range interaction (α ¼ 0) and their
dependence on system size. For a general treatment, we
assume a random transverse field, so B ¼ 0 and hn ≠ 0. We
take as the initial state jΨð0Þi a random superposition of all
states jVb

ki that belong to the same fixed band b chosen for
the analysis. We verified that the results for single states
jVb

ki picked at random from the same energy band are
equivalent.
In Figs. 2(a) and 2(b), we compute the probability, PbðtÞ,

for the initial state to remain in its original energy band b,

PbðtÞ ¼
X

k

jhVb
k je−iHtjΨð0Þij2; ð3Þ

where the sum includes all the states of the selected energy
band. The results are shown for hPbðtÞi, where h:i indicates
the average over random realizations of the transverse field

and initial states. We show the case of b ¼ 1, but similar
results hold for other bands. It is evident that the probability
to remain in the initial band increases with system size.
This happens in the presence of a random transverse field
[Fig. 2(a)] and also when NN interactions are added
[Fig. 2(b)].
In Figs. 2(c) and 2(d), we plot the asymptotic values of

the leakage probability, Pleak ¼ 1 − limt→∞hPbðtÞi, as a
function of the random field strength for Jz ¼ 0 [Fig. 2(c)]
and vs the NN coupling strength for W ¼ 0 [Fig. 2(d)].
Pleak represents the probability for jΨð0Þi to leak outside its
original band. It decreases with L, showing that as the
system size increases, the evolution of jΨð0Þi remains more
and more confined to a subspace of V for a longer time.
Note that the distance between the bands nearby the initial
one increases with L, but so does the number of states that
are connected byH0. The suppression of leakage takes into
account this nontrivial interplay. A perturbative argument
leads to Pleak ∝ ðW=JÞ2=L for W ≠ 0 and Jz ¼ 0, while
Pleak ∝ ðJz=JÞ2=L for NN interaction only [39]. Such
scaling relations are consistent with our numerical data
in Figs. 2(c) and 2(d).
The invariant subspaces generated by long-range inter-

action can be related to the QZE [34–38]. This term refers
to the familiar freezing of the dynamics due to frequent
measurements, but also to the onset of invariant Zeno
subspaces that occurs in unitary dynamics due to strong
interactions [36,38] and that has been studied experimen-
tally [40]. The latter scenario is closer to our case and can
be explained as follows. Consider the total Hamiltonian
H ¼ Hs þ gHmeas, which one may interpret as a quantum
system described byHs that is continuously observed by an
“apparatus” characterized by gHmeas. In the limit of strong
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FIG. 2. Probability for the initial state to remain in [(a) and (b)]
or leave [(c) and (d)] the band b ¼ 1. The initial state is a random
superposition of states jVb

ki. In (a) Jz ¼ 0, W ¼ 2 and in
(b) Jz ¼ 1, W ¼ 0; L ¼ 10; 12; 14 from bottom to top. In
(c) Pleak vs W for Jz ¼ 0 and in (d) Pleak vs Jz for W ¼ 0.
Symbols represent numerical results and full lines are analytical
estimates [39] with an overall fitting multiplicative factor. In all
panels: averages over 50 realizations, B ¼ 0, α ¼ 0.
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coupling, g → ∞, a superselection rule is induced that
splits the Hilbert space into the eigensubspaces of Hmeas.
Each one of these invariant quantum Zeno subspaces is
specified by an eigenvalue vk and is formed by the
corresponding set of degenerate eigenstates of Hmeas.
The dynamics becomes confined to these subspaces and
dictated by the Zeno Hamiltonian HZ ¼ P

kΠkHsΠkþ
vkΠk, where Πk are the projectors onto the eigensubspaces
of Hmeas corresponding to the eigenvalues vk.
For the system investigated here, we associate Hs with

H0 and gHmeas with V. The subspaces of V, with fixed
numbers b of excitations, become invariant subspaces of
the total Hamiltonian not only when J → ∞ with B, W, Jz
fixed, which is the scenario of the QZE described above,
but also in the large system size limit, L → ∞, which is the
main focus of this work.
When Jz ¼ 0, the Zeno Hamiltonian coincides with

V, because H0 does not directly couple states jVb
ki

that belong to the same eigensubspaces of V, soP
kΠkH0Πk ¼ 0. This explains why the dynamics in

Fig. 1(b) is frozen for very long times. On the other
hand, in the case where B, W ¼ 0 and Jz ≠ 0, we can
rewrite H0 in terms of the σ�x

n operators that flip the
spins in the x direction. The projection of the NN part
of the Hamiltonian on the eigensubspaces of V leaves
only the term σþx

n σ−x
nþ1 þ σ−x

n σþx
nþ1, which leads to a Zeno

Hamiltonian with an effective NN interaction that
conserves the number of excitations inside each band
b. This explains why in Fig. 1(d) a light cone typical of
short-range interactions appears.
Fidelity decay.—To substantiate that the dynamics in the

subspaces with fixed b becomes indeed controlled by the
Zeno Hamiltonian as L increases, we analyze the fidelity

between an initial state evolved under the total Hamiltonian
H and the same state evolved under HZ,

FðtÞ ¼ jhΨð0ÞjeiHZte−iHtjΨð0Þij2: ð4Þ
It is clear that if H → HZ then FðtÞ → 1. The results are
shown in Fig. 3. Equivalently to Fig. 2, we fix B ¼ 0 and
deal with averages over disorder and initial states, which
gives hFðtÞi. jΨð0Þi is again a random superposition of all
states jVb

ki belonging to the same band b.
In Figs. 3(a) and 3(d) the fidelity is plotted vs time for

different system sizes for the band with b ¼ 3. In panel (a),
H0 contains only the random fields, while in (d), H0

contains only the NN interaction. In both cases the fidelity
decay slows down as the system size increases, confirming
that HZ determines the dynamics for large L.
For the Jz ¼ 0 case of Fig. 3(a), since the projection of

H0 on the b subspace is 0, the fidelity coincides with the
survival probability, FðtÞ ¼ jhΨð0ÞjΨðtÞij2, which, coun-
terintuitively, decays slower as the system size increases.
This shows that the dynamics localizes as L → ∞:FðtÞ
decays as a Gaussian [41–45]—see the dashed lines in
Fig. 3(a).
In Figs. 3(b) and 3(c) we study how the time T1=2 that it

takes for the survival probability to reach the value 1=2
depends on the disorder strength (b) and on system size (c).
Figure 3(b) provides information associated with the usual
QZE, where the quantum Zeno subspaces are induced
by decreasing the strength of H0. One sees that the
dynamics slows down with the reduction of disorder as
hT1=2i ∝ W−2. In Fig. 3(c), hT1=2i grows with L, corrobo-
rating our claims that the fidelity increases and the
excitations become more localized as the system size
increases.
The estimation of the dependence of T1=2 on the

parameters of H goes as follows. Since the eigenstates
of V in each invariant subspace are degenerate, the
perturbation H0 mixes them all. In this case, the energy
uncertainty ω of the initial state can be approximated by the
energy spread δE of each band induced by the perturbation.
The fidelity decay can then be estimated as T1=2 ≃ 1=δE,
where δE is computed from perturbation theory [39]. For
large system sizes one has T1=2 ∝ J

ffiffiffiffi
L

p
=W2. The analytical

estimates for T1=2 are shown with dashed curves in
Figs. 3(b) and 3(c). The agreement is excellent.
We note that T1=2 gives the time scale over which the

shielding effect persists. In finite systems, shielding is
effective for a finite time that can, however, be exceedingly
long, as shown in Fig. 3.
Conclusions.—We revealed a generic effect of long-

range interacting systems: cooperative shielding. It refers to
invariant subspaces that emerge as the system size
increases. Inside these subspaces, the dynamics occurs
as if long-range interaction was absent, being dictated by
effective short-ranged Hamiltonians. A parallel was estab-
lished between these Hamiltonians and Zeno Hamiltonians.
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FIG. 3. Fidelity decay and time for it to reach the value 1=2;
initial states are random superpositions of jVb

ki. Upper panels:
FðtÞ for b ¼ 3 for Jz ¼ 0, W ¼ 2 (a) and for W ¼ 0, Jz ¼ 1 (d).
From bottom to top: L ¼ 10, 12, 14. Numerical results: full lines.
Gaussian decay: dashed lines. Lower panels have Jz ¼ 0 and give
T1=2 vs W for L ¼ 12 (b), and vs L for W ¼ 2 (c), for jΨð0Þi
from different bands. Numerical data: symbols. Analytical
estimate T1=2 ¼ c1=δE with c1 being a fitting parameter: dashed
lines. All panels: averages over 50 realizations, α ¼ 0, B ¼ 0.

PRL 116, 250402 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JUNE 2016

250402-4



The analysis and control of nonequilibrium dynamics
can never be detached from the initial state considered. For
exactly the same Hamiltonian with long-range interaction,
an initial state with components in the various subspaces
induced by that interaction leads to a nonlocal propagation
of perturbation, as demonstrated experimentally with ion
traps [8,9], while an initial state belonging to a single
subspace is unaffected by the long-range interaction, as
verified here. Cooperative shielding could also be tested by
those experiments.
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