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We provide evidence that spin ferroquadrupolar (FQ) order is the likely ground state in the nonmagnetic
nematic phase of stoichiometric FeSe. By studying the variational mean-field phase diagram of a bilinear-
biquadratic Heisenberg model up to the 2nd nearest neighbor, we find the FQ phase in close proximity to
the columnar antiferromagnet commonly realized in iron-based superconductors; the stability of the FQ
phase is further verified by the density matrix renormalization group. The dynamical spin structure factor in
the FQ state is calculated with flavor-wave theory, which yields a qualitatively consistent result with
inelastic neutron scattering experiments on FeSe at both low and high energies. We verify that FQ can
coexist with C4 breaking environments in the mean-field calculation, and further discuss the possibility that
quantum fluctuations in FQ act as a source of nematicity.
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Superconductivity in the iron-based superconductors
[1,2] is widely recognized to have spin fluctuations at its
origin [3,4], as it develops after the suppression of columnar
antiferromagnetism (CAFM) by doping or applied pressure
on the parent compounds [5–8]. The CAFM phase is
characterized by the magnetic Bragg peaks at wave vectors
Q1;2 ¼ ðπ; 0Þ=ð0; πÞ in the one-iron Brillouin zone, seen
ubiquitously in different families of the iron pnictides and
chalcogenides [5,9,10]. The discovery of superconductivity
in stoichiometric FeSe thus came as a surprise, because the
long-range magnetic order is conspicuously absent in this
material [11–16]. Another important feature, universally
observed across different families of iron-based supercon-
ductors, is the appearance of an electronic nematic phase
[17–20], which spontaneously breaks the lattice C4 rota-
tional symmetry. Usually, nematicity appears in close
proximity to magnetism above the Néel temperature;
however, in FeSe, the nematic phase appears without any
accompanying magnetism and coexists with superconduc-
tivity [12–15]. It is thus important to understand the origin of
this nonmagnetic nematic phase, in particular, to gain insight
into its effect on superconductivity.
It turns out thatmagnetic order can be induced by applying

hydrostatic pressure to FeSe [12–14]. It has also been
suggested based on ab initio calculations that the non-
magnetic phase in FeSe lies in close proximity to the
CAFM phase [21–23]. Further evidence of proximity to
long-range magnetic order comes from inelastic neutron
scattering (INS) experiments, which found large spectral
weight at wave vectors Q1;2 [24–27]. Two natural questions
arise: In the theoretical phase diagram, is there a nonmagnetic
phase that neighbors on the CAFM? And, furthermore, how
does such a nonmagnetic phase give rise to nematicity?
In an attempt to answer these questions, several theoretical

scenarios have been proposed for nonmagnetic ground states
that may appear as a result of frustration: a nematic quantum

paramagnet [28], a spin quadrupolar state with wave vectors
Q1;2 [29], or a staggered dimer state [30]. In all three cases,
the ground state wave function was designed to explicitly
break the C4 symmetry, thus resulting in nematicity.
Alternatively, instead of being the ground state property,
nematicity can also be induced as a result of anisotropic
thermal [31,32], or possibly quantum, fluctuations.
In this Letter, we investigate the frustrated bilinear-

biquadratic Heisenberg model used by many authors to
model iron pnictides and chalcogenides [28,29,33–35], and
show that the most likely nonmagnetic state that agrees
qualitatively with the INS data on FeSe is the spin ferro-
quadrupolar (FQ) phase. By using variational mean-field,
flavor-wave expansion, and the density matrix renormaliza-
tion group (DMRG) calculations, we firmly establish that
the FQ phase is situated in close proximity to the CAFM
state in the phase diagram and is readily accessible in the
realistic parameter regime of the model. The experimentally
observed onset ofmagnetism in FeSe under applied pressure
[12–14] is thus interpreted as the transition between the
proposed FQ phase and CAFM. The calculated dynamical
spin structure factors agree qualitatively with the INS data
[24–27], exhibiting pronounced maxima of the scattering
intensity at the gapped Q1;2 points. We note that this is in
contrast with the antiferroquadrupolar (AFQ) scenario,
which has negligible spectral weight at these wave vectors
[29]. Furthermore, we demonstrate that FQ order is robust
with respect to the C4 symmetry breaking environment, and
can thus support nematicity, regardless of its microscopic
origin. Additionally, we find that the density-density inter-
actions between Q1;2 modes are highly repulsive within the
FQ phase and diverge upon approaching the FQ-CAFM
phase boundary, providing a scenario in which quantum
fluctuations in FQ are the origin of nematicity.
We use a bilinear-biquadratic Heisenberg model

[28,29,33–35] to investigate the ground state properties
and spin dynamics:
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KijðSi · SjÞ2; ð1Þ

where Si is the quantum spin-1 operator on site i. In the
present study, the interactions are limited to the 1st and 2nd
nearest neighbors: Jij ¼ fJ1; J2g; Kij ¼ fK1; K2g.
The quadrupolar operators are traceless symmetric ten-

sors Qαβ ≡ SαSβ þ SβSα − 4
3
δαβ (α, β ¼ x, y, z). Only five

of these tensors are linearly independent, which are
convenient to cast in a 5-vector form: Q≡ ½ðQxx −QyyÞ=2;
ð2Qzz −Qxx −QyyÞ=2 ffiffiffi

3
p

; Qxy; Qyz; Qxz�. The model
Eq. (1) can then be rewritten as
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ð2Þ
A time reversal invariant basis for spin-1 is used in this

Letter, jαi ¼ fjxi; jyi; jzig, defined as a unitary trans-
formation from the regular jSzi basis:

jxi ¼ i
j1i− j1̄iffiffiffi

2
p ; jyi ¼ j1iþ j1̄iffiffiffi

2
p ; jzi ¼−ij0i: ð3Þ

An arbitrary single site state can be represented by a unit-

length director ~di, in this basis j~dii ¼
P

αd
α
i jαi.

Given a spin state parametrized by director ~di, the energy
of the model Eq. (2) can be readily calculated at the mean-
field level by decoupling hSi · Sji ≈ hSii · hSji and sim-
ilarly for hQi · Qji. Such mean-field decoupling is justified
in a minimally entangled long-range order state, for which
the wave function can be written in a separable form jΨi ¼Q

ij~dii [36]. The mean-field ground state energy density is
given by

E0 ¼
1

2N

X
i;j

½Jijjh~dij~djij2 − ðJij − KijÞjh~dij~d�jij2 þ Kij�;

ð4Þ
where N stands for the total number of lattice sites.
We then perform a variational search by minimizing

Eq. (4) with respect to ~di, where the directors ~di are
restricted on 2 × 2 and 4 × 4 unit cells with periodic
boundary condition. The purely quadrupolar states are
identified with vanishing magnetic moment: hSii≡
2Re½~di� × Im½~di� ¼ 0; ∀ i. Among the quadrupolar states,
one distinguishes a FQ phase, with all directors parallel,
and more general AFQ phases with noncollinear directors.
The familiar magnetic phases correspond to dipolar
moment jhSiij ¼ 1; ∀ i with a spin structure factor char-
acterized by the Bragg peaks. In general, one also encoun-
ters states that contain a mixture of magnetic and
quadrupolar moments with 0 < jhSiij < 1 on all sites, or
states that have purely magnetic or quadrupolar moments
only on partial sites, or even so-called semiordered states
with undetermined jhSiij [36].

The variational mean-field phase diagram is given in
Fig. 1, obtained for antiferromagnetic J1 > 0 and
J2=J1 ¼ 0.8, which were deduced by fitting the INS
spectra for BaFe2As2 [38] to the J1 − J2 − K1 spin model
[34,35]. Because of the fact that FeSe lies in proximity to
CAFM, we do not expect its parameters to deviate
dramatically from those deduced in Refs. [34,35], and
we have also verified that the magnetic and quadrupolar
phases in Fig. 1 are robust to small variations of J2=J1.
Remarkably, Fig. 1 shows that the only nonmagnetic phase
in close proximity to CAFM is the FQ phase, with both
phases realized at negative biquadratic interaction K1. We
note that K1 < 0 is generically expected from the fitting of
the INS spectra in the iron pnictides/chalcogenides [34,35],
with the ratio jK1j=J1 of order 1, consistent with the
location of CAFM region in Fig. 1. The large negativeK1 is
also expected from the spin crossover model by Chaloupka
and Khaliullin [39], which also incorporates the FQ and
CAFM phases; and large jK1j also naturally arises within
the Kugel-Khomskii type models when the orbitals order
inside the nematic phase [40]. No other purely quadrupolar
phases were found; in particular, the AFQðπ; 0Þ=ð0; πÞ
phase, expected to be realized for positive K2 [29] turns out
to be unstable to the admixture of the magnetic moment,
resulting in a mixed magnetic or quadrupolar state with
0 < jhSiij < 1 (gray region in Fig. 1) [41].
Since the variational mean-field calculation only takes

into account minimally entangled mean-field states, the
results in Fig. 1 may be energetically unfavorable upon
quantum fluctuations. To verify the stability of the FQphase,
we have performed the SU(2) DMRG calculations [42–45]
onL × 2L rectangular cylinderswithL ¼ ð4; 6; 8Þ [46] near
the mean-field FQ-CAFM phase boundary. We keep up to
6000 SU(2) states, leading to truncation errors less than 10−5

in all data points presented in this Letter. In Fig. 2, we show
both the static spin and quadrupolar structure factors,

FIG. 1. Variational mean-field phase diagram of the
Hamiltonian Eq. (1) with J1 ¼ 1, J2 ¼ 0.8, and periodic boun-
dary condition (2 × 2 and 4 × 4 unit cells yield exactly the same
results) [37]. The dashed lines denote shifted phase boundaries
when breaking C4 symmetry in Eq. (1) by hand, using
Jx;y1 ¼ ð1� 0.2ÞJ1.
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defined as m2
SðqÞ ¼ ð1=L4ÞPijhSi · Sjieiq·ðri−rjÞ and

m2
QðqÞ ¼ ð1=L4ÞPijhQi · Qjieiq·ðri−rjÞ (where i, j are only

partially summed on L × L sites in the middle of the
cylinder, in order to reduce boundary effects [44,47–49]).
Figures 2(a) and 2(b) show the results for m2

SðqÞ in the FQ
and CAFM phases, respectively; Figs. 2(c) and 2(d) depict
m2

QðqÞ in these two phases. Since m2
SðqÞ and m2

QðqÞ are
maximized near ð0; πÞ and (0,0), respectively, we fix q at
these two momenta, and perform finite size scaling analysis
ofm2

SðqÞ andm2
QðqÞ in Figs. 2(e) and 2(f). For large negative

K1, it is clearly shown that the m2
Sð0; πÞ is suppressed from

L ¼ 4 to 8, and vanishes in the thermodynamic limit by
extrapolation; whilem2

Qð0; 0Þ remains finite, confirming FQ
as the underlying phase. For small negative K1, m2

Sð0; πÞ
remains finite in the thermodynamic limit, confirming the
corresponding phase to be CAFM.We note that the DMRG
yields a larger FQ region with the FQ-CAFM boundary
found at K1 > −1.4, compared to the mean-field prediction
of Kc

1 ¼ −1.6 in Fig. 1.
Having established FQ as a stable nonmagnetic phase in

close proximity to CAFM, we turn to the analysis of its
magnetic exictations. We use the flavor-wave technique,
which represents the local spin and quadrupolar operators
Oi in terms of three flavors of Schwinger bosons in the
fundamental representation of SU(3) [36,50–52]:
Oi ¼

P
αβb

†
i;αO

αβ
i bi;β, subject to the constraintP

αb
†
i;αbi;α ¼ 1. The quadrupolar solution corresponds to

the Bose-Einstein condensation of the appropriate boson
(labeled bz), and the remaining two flavors capture both
spin and quadrupolar excitations [36,50,51]. Expanding

b†i;z ¼ bi;z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b†i;xbi;x − b†i;ybi;y

q
and keeping up to

bilinear terms in the Hamiltonian Eq. (2), it can be
diagonalized by the standard Bogoliubov transformation
αq;a ¼ cosh θqbq;a − sinh θqb

†
−q;a, yielding (up to a con-

stant) [41]

Hfw ¼
X
a¼x;y

X
q

ωq;aðα†q;aαq;a þ 1=2Þ; ð5Þ

where dispersion ωq;a are degenerate in flavor index
a ¼ fx; yg, shown in Fig. 3(a). Since the FQ phase
spontaneously breaks the spin-rotational symmetry, there
are two gapless Goldstone modes at q ¼ 0. However, there
is no Bragg peak as the dynamical spin structure factor
Sðq;ωÞ shown in Fig. 3(b) has a vanishing spectral weight
(∝ jqj) at q ¼ 0, ω ¼ 0 because of the conservation of time
reversal symmetry in quadrupolar states [50,51,53,54]. In
Fig. 3(b), we see large spectral weight at Q1;2 at low energy
due to the proximity to the CAFM phase. The spectral
weight further shifts towards ðπ; πÞ when increasing ω [see
Figs. 3(c)–3(f)], closely tracking the INS results on FeSe
[24–27]. We note that in the AFQ ðπ; 0Þ=ð0; πÞ phase
proposed in Ref. [29], one would expect Goldstone modes
with zero spectral weight at Q1;2, which would contradict
the large-intensity dispersing feature near Q1;2 found in the
INS data on FeSe.
Having demonstrated that the FQ phase is indeed

consistent with the INS results on FeSe [24–27], we
now ask further whether the FQ phase can coexist with
nematicity observed in FeSe. We apply C4 breaking
exchange anisotropy in Eq. (1), using Jx;y1 ¼ ð1� 0.2ÞJ1
in the variational mean-field calculation. This results in the
shift of the phase boundaries (shown with dashed lines in
Fig. 1) and, although the FQ phase shrinks slightly, it

FIG. 2. Static spin and quadrupolar structure factors obtained
from DMRG on RCL − 2L cylinders with J1 ¼ 1, J2 ¼ 0.8,
K2 ¼ −1. (a),(b)m2

SðqÞ for L ¼ 8. (c),(d)m2
QðqÞ for L ¼ 8. (e),(f)

Finite-size scaling of m2
S½q ¼ ð0; πÞ� and m2

Q½q ¼ ð0; 0Þ� as a
function of the inverse cylinder width, where the lines are guides
to the eye.

FIG. 3. Dispersion and dynamical spin structure factor in the
FQ phase obtained from flavor-wave calculation with J1 ¼ 1,
J2 ¼ 0.8, K1 ¼ −1.65, K2 ¼ −0.8. (a) Dispersion plotted in the
1st BZ. (b) Energy-momentum dependence of Sðq;ωÞ. (c)–(f)
Constant-energy cuts of Sðq;ωÞ in q space. (c) ω=J1 ¼ 2.
(d) ω=J1 ¼ 4. (e) ω=J1 ¼ 6. (f) ω=J1 ¼ 8. A Lorentzian broad-
ening factor λ ¼ 0.8J1 is used for approximating the delta
functions.
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clearly remains stable in a large portion of the mean-field
phase diagram.
We now turn to the microscopic origin of nematicity in

FeSe—can FQ order be the reason for the discrete C4

symmetry breaking? Unlike other proposals starting with
nematic spin wave functions in the ground state [28–30], in
the flavor wave theory up to bilinear terms in Eq. (5), the
spin correlations in the FQ phase are C4 symmetric. This
does not mean that the FQ ground state cannot sponta-
neously break this symmetry and, in fact, it turns out that
higher order interactions (mode-mode coupling) become
increasingly important when approaching the FQ-CAFM
phase boundary. Collecting up to the 4th order terms in the
flavor wave theory [41], we obtainH4th ¼ Hfw þHint with

Hint ¼
1

N

X
abcd

X
k1;k2;q

Vcd
abðk1;k2;qÞα†k1þq;aα

†
k2−q;bαk2;cαk1;d;

ð6Þ
where only five combinations of fabcdg are nonzero:
fxxxxg; fyyyyg; fxxyyg; fyyxxg, and fxyyxg. Above,
only particle number conserving terms have been kept
for simplicity.
In terms of Schwinger bosons, we can define a nematic

order parameter as hΔi ¼ P
ahnQ1;a − nQ2;ai, where h…i

denotes the expectation value in the full interacting
Hamiltonian H4th, and nq;a ¼ α†q;aαq;a is the boson density
operator of flavor a at momentum q. If we stop at the
quadratic level of flavor wave theory, then hΔifw ≡ 0 due to
the Bose-Einstein condensation at q ¼ ð0; 0Þ. Once inter-
actions are taken into account in H4th, the condensate will
become depleted, resulting in a finite boson density at the
local minima Q1;2 of the spectrum in Fig. 3(a) and thus
making it possible, in principle, that hΔi ≠ 0. To see how
this may occur, we consider the density-density interactions
between the Q1;2 modes, which can be extracted from
Eq. (6) as

Hint ¼ ~VðnQ1;xnQ2;x þ nQ1;ynQ2;yÞ þ ~V 0nQ1;xnQ2;y þ � � � ;
ð7Þ

where the intraflavor and interflavor interactions ~V and ~V 0

are expressed [41] through Vcd
abðk1;k2;qÞ in Eq. (6).

The values of ~V and ~V 0 are plotted in Fig. 4. Intriguingly,
they are repulsive in the region K1 > −3, and diverge when
approaching the FQ-CAFM phase boundary at Kc

1 ¼ −1.6,
resulting in a C4 symmetry-breaking imbalance in boson
occupation nQ1

≠ nQ2
. Since sufficiently strong (not nec-

essarily diverging) interactions can commonly trigger
diverging susceptibilities, we expect the renormalized
nematic susceptibility to diverge before reaching the FQ-
CAFM phase boundary, resulting in a finite nematic
window KN

1 < K1 < Kc
1 inside the FQ phase. The exist-

ence of such a window should be carefully verified by
further analytical and numerical efforts, which will be a
subject of future work. We note that while the present study

is limited to second-neighbor interactions, our mean-field
analysis shows that inclusion of third neighbor K3ðSi · SjÞ2
term with K3 < 0 will further favor FQ over magnetic
phases [41], possibly leading to a wider nematic region.
Direct experimental measurements of quadrupolar orders

are typically difficult, due to the negligible spectral weight
of the spin structure factor near the ordering wave vector.
A possible way to visualize such “ghost” modes is by
applying a magnetic field: the degeneracy of the two flavors
will be lifted, and one of the Goldstone modes acquires a
gap and a visible spectral weight [53,54], as we demon-
strate in Ref. [41]. The quadrupolar orders can also be
measured by Raman scattering, which is able to couple to
spin and quadrupolar operators by tuning light polarization
and incoming light frequency, thus showing qualitatively
different features for magnetic and quadrupolar phases
[55]. More direct evidence can be gained from the quad-
rupolar structure factor, which should exhibit Bragg peaks
at the ordering wave vector [53], and, in principle,
can be measured by resonant inelastic x-ray scattering
experiments [56,57].
In the present work, the effect of conduction electrons on

the spin dynamics has been neglected for simplicity sake;
the latter lead to an additional broadening of the INS
features due to the Landau damping [35], but do not
otherwise impact our conclusions.
In summary, we showed that the FQ phase lies in close

proximity to CAFM in the phase diagram of a bilinear
biquadratic spin-1 model and that it is stable in a realistic
range of the model parameters, as verified by both the
mean-field and DMRG methods. The dynamical spin
structure factor Sðq;ωÞ inside the FQ phase is shown to
be qualitatively consistent with the recent INS results on
FeSe. While at the quadratic level the FQ ground state does
not explicitly break the C4 lattice symmetry, we demon-
strate that the quantum fluctuations result in repulsive
density-density interactions between Q1;2 magnon modes,
whose strength diverges on approaching the FQ-CAFM

FIG. 4. The density-density interactions between the Q1;2
modes when approaching the FQ-CAFM phase boundary
Kc

1 ¼ −1.6. The parameters used in this plot are J1 ¼ 1,
J2 ¼ 0.8, and K2 ¼ −0.8.
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phase boundary. This suggests the existence of a finite
window inside the nonmagnetic FQ phase where the C4

symmetry is spontaneously broken. Further studies are
necessary to establish such a nematic window unequivo-
cally; however, even if the nematicity is driven by other
sources (for example, local strains due to lattice imperfec-
tions, or orbital ordering, as proposed in the light of recent
nuclear magnetic resonance [58,59] and ARPES [60]
experiments), the incipient nematic order will couple to
the symmetry-breaking quantum fluctuations that we found
in the FQ phase. Our calculations show that the FQ order is
robust with respect to such C4 breaking environments and
can coexist with nematicity.
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Note added in Proof.—Recently, we became aware of a
study on the Jij − Kij model up to the third neighbors [62].
In addition to the FQ state, those authors also find evidence
of the AFQ ðπ; 0Þ=ð0; πÞ phase stabilized by a large
negative K3, which sits far away from the CAFM phase
in their theoretical phase diagram.
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