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We study the propagation of a hole in degenerate (paramagnetic) spin environments. This canonical
problem has important connections to a number of physical systems, and is perfectly suited for
experimental realization with ultracold atoms in an optical lattice. At the short-to-intermediate time scale
that we can access using a stochastic-series-type numeric scheme, the propagation turns out to be distinctly
nondiffusive with the probability distribution featuring minima in both space and time due to quantum
interference, yet the motion is not ballistic, except at the beginning. We discuss possible scenarios for
long-term evolution that could be explored with an unprecedented degree of detail in experiments with
single-atom resolved imaging.
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While classical random walks are well understood as a
diffusive process realized in a wide range of physical
systems, their quantum-mechanical counterparts are far
more subtle [1]. To be more specific, consider vacancy
motion in the paramagnetic phase of solid 3He, or,
equivalently, hole propagation in the strongly correlated
Mott-insulator (MI) state of electrons. Even though the
dynamics of holes or vacancies are governed by standard
quantum mechanics, the probability amplitudes for various
trajectories do not interfere the same way as they do for
ballistic motion in a perfect (or spin polarized) lattice
because propagating holes often leave behind a trace in the
spin environment that effectively “records” where they
have been (see Fig. 1). This disrupts quantum interference
between different paths, which, otherwise, would lead to a
much larger mean-square displacement than in the classical
case for the same path arclength. However, some trajecto-
ries and even whole classes of trajectories [see Fig. 1(d)] do
interfere. This leads to a highly nontrivial propagation
intermediate between the quantum-ballistic and classical-
diffusive limits. Interference between trajectories (leading
to one and the same final state) may also depend on whether
the lattice is bipartite or not, as well as on the statistics of
particles behind the spin components (see below).
In condensed matter systems that are too complicated or

strongly interacting to allow for an exact solution, accurate
analytic treatment, or viable numerical computations in the
thermodynamic limit, the study of hole propagation in
model systems where lattice sites carry an additional
“flavor” index offers a means of gaining insight into the
density of states, transport properties, formation of mag-
netic polarons, and the nature of ferromagnetic instability in
a MI [2]. Characteristic examples include the Fermi
Hubbard and t − J models [2–5], the Kitaev-Heisenberg
model [6], as well as vacancy motion in solid 3He crystals

[7–9]. In quantum computing and information processing,
relevant problems and algorithms are also frequently
formulated as quantum walks on a network [10–12].
Finally, hole propagation in a degenerate spin environment
provides an important physical realization of a system
experiencing so-called dissipation-less decoherence when
the environment “records” particle trajectories with negli-
gible energy transfer [13,14].
To the best of our knowledge, the problem of hole

propagation in degenerate magnetic environments is still far
from being understood even at the conceptual level despite
a considerable long-standing interest in a variety of con-
texts. On the one hand, such basic questions as the
probability of return, dynamic formation of magnetic
domains, and the value of the diffusion constant (if any)
and its dependence on the initial conditions, remain
unanswered theoretically. On the other hand, it is virtually
impossible to obtain accurate experimental information
about hole dynamics and changes in its local spin

(a) (b) (c) (d)

FIG. 1. Hole propagation in a spin environment. (a) The hole
starts at the lower left corner. As it moves, it leaves behind a trace
of altered spins. In (b),(c), the final destination is the upper right
corner, yet the paths taken differ (purple dashed lines), and so do
the resulting spin states. In (d), we show a self-retracing trajectory
described as a necklace of zero-area loops; all such trajectories
interfere because at the end the hole returns to the origin, and the
spin environment is inherently preserved.
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environment as it moves along for realistic condensed
matter systems. However, an experimental realization of
relevant model systems in a controlled setup with full
access to all lattice sites is now possible using cold atoms or
ions trapped in an optical lattice and imaged with single-
site resolution [15–20]. These techniques have previously
been applied to study quantumwalks, and yield a resolution
in the time domain that is much finer than the inverse
hopping, allowing observation of interference patterns at
extremely short time scales [16]. Recently, it has also
become clear that N-component fermions with N > 2 can
be realized in optical traps by exploiting nuclear spin
[21–23]. Remarkably, the most interesting regime of a near-
degenerate spin environment also happens to be the least
demanding in terms of lattice parameters and system
temperature, and is easily implementable with existing
technology. In fact, the fermionic MI phase corresponding
to large U=J (where J is the hopping matrix element and U
is on-site repulsion) at temperature T > 4J2=U (above the
onset of strong antiferromagnetic correlations) was already
created some years ago [24,25].
In this Letter, we address the topic of a quantum walk

undertaken by the hole in degenerate spin environments on a
square lattice with the goal of establishing precise data for
hole dynamics over short-to-intermediate time scales, testing
existing analytical predictions, discussing open questions
and possible scenarios concerning long-time dynamics, and
motivating (apart from providing benchmarks) future exper-
imental studies.
Physically, our system corresponds to the N-component

Hubbard model

H ¼ −J
X

hi;ji;σ
c†i;σcj;σ þ U

X

i

n2i ðσ ¼ 1; 2;…; NÞ; ð1Þ

deep into the MI phase, U=J ≫ 1, at high temperature
T ≫ J2=U, i.e., in the absence of antiferromagnetic corre-
lations (which is also the parameter regime where direct
single-site resolved imaging techniques work best). All
components are assumed to have one and the same—either
bosonic, or fermionic—statistics. For brevity we will refer
to σ as the spin index. Then, c†i;σ is the creation operator of a
σ particle on site i, niσ ¼ c†i;σciσ, and hi; ji stands for pairs
of nearest neighbors sites. To obtain the time-dependent
wave function ψðtÞ, we expand the evolution operator in
the Taylor series:

UðtÞ ¼ e−iHt ¼
X

n

ð−iÞn t
n

n!
Hn: ð2Þ

In the U=J → ∞ limit at unit filling factor when doubly
occupied sites are forbidden, the only allowed dynamic
process in Eq. (1) is hole propagation which can be viewed
as a quantum walk that alters the configuration of lattice
spins. Then, on a square lattice with coordination number

z ¼ 4, one can describe Hn as a sum of zn possible
trajectories. Using Monte Carlo simulation techniques, we
sample all sums stochastically [26] and classify trajectories
according to their distinguishable final states. This allows us
to study the evolution of the spatial distribution function for
the hole over some time interval, limited by the available
memory resources. The specific protocol is as follows. (i) We
start by proposing n from the Poisson distribution

pðnÞ ¼ ðztÞn
n!

e−zt; ð3Þ

where time is given in units of 1=J. (ii) Then, a random walk
of the hole with n steps is conducted (at each step the hole is
moved randomly to one of the nearest neighbors sites).
(iii) The final displacement of the hole, r, and the resulting
configuration of the spin environment, γ, are registered, and
ð−iÞn is added to a bin corresponding to the jr; γi state. This
contribution is real or imaginary depending on the parity of
n. (iv) The procedure is repeated, and the set of generated
states is used to construct the wave function

ψðtÞ ¼
X

r;γ

Aγðr; tÞjr; γi; ð4Þ

where amplitudes Aγðr; tÞ are normalized to unity,P
r;γjAγðr; tÞj2 ¼ 1. The spatial probability distribution

for the hole position is then given by

ρðr; tÞ ¼
X

γ

jAγðr; tÞj2: ð5Þ

(v) Finally, the entire procedure is repeated for multiple
(256) randomly generated initial states jr ¼ 0; γini to obtain
averaged results for ρðr; tÞ.
There is no extra sign associated with fermionic

exchange cycles in our case because closed trajectories
on a bipartite lattice always result in an even number of
exchanges. Moreover, since real and imaginary parts of
ψðtÞ are based on trajectories with a different parity of n,
the probability distribution ρðr; tÞ remains insensitive to
particle statistics even if the lattice is not bipartite.
However, if one considers hole propagation in a Bose-
Fermi mixture, then the fermionic sign does matter. Also, if
the initial state is a superposition ψð0Þ ¼ P

r0;βCr0;βjr0; βi,
then particle statistics become important on nonbipartite
lattices. On bipartite lattices it is always possible to map
between the fermionic and bosonic problems, even if the
initial state is a superposition.
In Fig. 2, we show the “survival” probability ρð0; tÞ for

systems with a different number of spin components
N ¼ 2, 3, 4, and ∞. For comparison, we also include
analytic results for ballistic propagation in a perfect spin-
polarized lattice as well as the Brinkman-Rice (BR)
approximation [3]. [The latter approximates Āð0; tÞ ¼ hr ¼
0; γinjψðtÞi by considering only self-retracing closed paths
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[see Fig. 1(d)] that by construction preserve the original
spin configuration γin; then the spacial probability distri-
bution is obtained through a second approximation given
by ρð0; tÞ ≈ jĀð0; tÞj2.] Up to the first minimum, taking
place at tmin ≈ 0.9, the different scenarios are very similar,
suggesting that the underlying spin degrees of freedom
have little effect on the early evolution, because it is
dominated by the self-retracing paths that inherently
preserve the spin environment. Indeed, n ¼ 0, four
n ¼ 2, and thirty-two out of forty n ¼ 4 closed loop
trajectories are from the self-retracing set. Still, by exclud-
ing certain trajectories from interference, the BR approxi-
mation predicts tmin much more accurately than ballistic
propagation, indicating that dissipationless decoherence
starts playing a role at this time scale. From Fig. 2(b) it
is clear that all spin systems exhibit near-complete destruc-
tive interference at the first minimum with survival prob-
abilities dropping below half a percent.
After the first minimum, the evolution is clearly depen-

dent on the environment. Since the BR approximation only
takes into account trajectories that preserve the spin con-
figuration, it incorrectly predicts instances of perfect destruc-
tive interference occurring at a later time [an impossible
effect due to the large number of jγi states contributing to
ρð0Þ, see Eq. (5)]. The survival probability does show

oscillations in time but they are strongly damped, and,
presumably, go away at longer time scales (determining
whether interference ceases to be relevant, and if so than at
what time scales, requires access to longer time scales).
Unexpectedly, the first oscillation is much weaker forN ¼ 2
than forN > 2. Intuitively, the probability of finding the hole
at the origin should be higher in systems with a larger value
of N due to stronger decoherence effects; what comes as a
surprise is the crossing of the curves at t ≈ 1.9.
Minima and maxima in the survival probability are

correlated with minima and maxima in the spatial proba-
bility distributions, see Fig. 3. The random walk in a
degenerate spin environment is thus strikingly different
from the case of ballistic motion in a spin-polarized system
that features perfect destructive interference events at
arbitrary long times [see Fig. 3(d)]. Yet the distribution
function is not that of a classical random walk either, which
is just a Gaussian without local minima in time or space.
The most natural assumption is that in the long-time

limit decoherence effects ultimately lead to diffusive
propagation characterized by linear dependence of the
mean-square displacement (MSD) on time. To see if our
simulations have reached this asymptotic behavior, we
introduce the time-dependent MSD exponent α as the
logarithmic derivative

α ¼ ∂ lnhr2i
∂ ln t : ð6Þ

Then, α can be deduced from the slope of the MSD curve
on the log-log plot, see Fig. 4(a). Fitting a cubic

(a)

(b)

FIG. 2. Probability of finding the hole at the origin as a function
of time (in units of inverse hopping, 1=J). The panels (a) and (b)
show the same data for different time intervals. The curves
correspond to different spin values N ¼ 2 , 3,4, and ∞, the
Brinkman and Rice self-retracing approximation, and ballistic
propagation (see legend). All curves, except that for ballistic
motion, follow each other closely up to the first minimum at
t ≈ 0.9, but beyond that point, the details of the spin environment
become important to the hole propagation. The BR approxima-
tion is very accurate up to the first minimum, but quickly fails at
longer t.

(a) (b)

(c) (d)

FIG. 3. Spatial probability distributions ρðr; tÞ [Eq. (5)]. Images
(a)–(c) correspond to N ¼ ∞ at t ¼ 0.9, t ¼ 1.375 and
t ¼ 1.875, while (d) shows the case of ballistic motion in a
polarized lattice at t ¼ 2. In (a), ρð0Þ is close to zero due to
destructive interference, changing to maximum in (b) only to
become a local minimum again in (c) at t ¼ 1.875, which also
corresponds to a shallow local minimum in the survival prob-
ability, see Fig. 2. In the ballistic case, strong destructive
interference is possible at arbitrary long times.
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polynomial to the data we can take the required loga-
rithmic derivative. The result is shown in Fig. 4(b).
Clearly, the diffusive regime was not yet reached within
the time scale of our simulations and we are still in the
crossover region (assuming that diffusion does take place,
see below). For t → 0 the motion is nearly ballistic and
αðt → 0Þ → 2, as expected.
Even though diffusion seems to be the most natural

outcome of long time evolution, this quantum walk has
several features that make it fundamentally different from
what takes place in more conventional dissipative environ-
ments where external degrees of freedom have dynamics of
their own. In our case, any change in the spin environment
is completely “slaved” to the hole dynamics. It is also
different from coherent propagation in static randommedia,
because the spin environment does change under evolution.
The combination of these two circumstances leads to long-
term memory effects because previously created trajectory
“records” can only be erased or scrambled by the sub-
sequent hole motion. These (and further) considerations
make the problem of long-time evolution in our system
highly nontrivial.
In the limit U=J → ∞, the ground state of the Fermi-

Hubbard model with one hole added to the MI phase is a
ferromagnet (Nagaoka theorem) [2] with a delocalized hole
and a kinetic energy of −zJ. The maximum energy is þzJ,
and also corresponds to a hole delocalized on a ferromag-
netic background, differing from the ground state only by
having the hole momentum shifted by fπ; πg. States with
energies slightly above minimum or below maximum can
be realized in the form of a hole delocalized in a finite sized
ferromagnetic “bubble”; i.e., they constitute a type of low
and high energy polaron [27,28].
The fact that the energy is bound so that −zJ ≤ ϵ ≤ zJ

has important implications for experimental realizations
with optically trapped atoms. These are generally

implemented with a harmonic trap, and so the hole is
effectively subject to an inverted harmonic trap—it attains a
potential energy that is maximal in the center of the trap;
Uðr̄Þ ≈ αr2, α < 0. The maximum energy that the hole can
absorb isΔEmax ¼ 2zjJj implying that if the hole originates
in the center of the trap, then it is bound to a region
jαjr2 ≤ ΔEmax → jr̄j ≤ rmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEmax=jαj

p
. In addition,

any hole found sufficiently close to jr̄j ¼ rmax has absorbed
enough energy to necessarily form a high energy polaron.
While it is possible to find ferromagnetic regions in a
degenerate system by sheer accident, these can also be
assembled by hole motion; compare to the N-puzzle game
in Fig. 5. In this sense, the most energetic states can be
viewed as a particular class of (ferromagnetic) solutions to
the N-puzzle game that is strongly correlated with large
hole displacement.
The presence of polarons in this model also raises

questions about hole mobility in the absence of a harmonic
trap (or in the interior of the trap where the potential energy
changes slowly). Specifically, such objects should move
slowly, suggesting that the edges of the energy spectrum are
associated with reduced hole mobility.
In conclusion, we find that at the early stages, the

quantum walk of a hole in a degenerate spin environment
is profoundly different from both the classical diffusive
case and the quantum ballistic propagation in a polarized
environment. Whether the motion is diffusive in the
long-time limit remains an open question. We point out
mechanisms that give rise to long-term memory effects,
making interference and thus mobility highly nontrivial.
We also propose that polarons at the edges of the energy
spectrum may be associated with impaired hole mobility.
Such effects are, however, outside of the capacity of our
simulation software, which is limited in terms of accessible
time scales. Unitary evolution of the entire system further
complicates the observation of polarons because holes in
random local spin configurations and holes in bubbles are
in a superposition state. One possible solution is to study
dynamics of initial states with holes delocalized in bubbles.
We argue that real progress in understanding this long-

standing problem is possible by performing experiments

(a)

(b)

FIG. 4. (a) Logarithmic plot of the mean-square displacement
as a function of time. The lines correspond to cubic polynomial
fits to data. (b) MSD exponent α. At small t it is close to 2, as
expected for coherent propagation in a perfect lattice. Within the
time scale of these simulations, α does not converge to a constant
value, so the precise nature of the propagation at large t
(specifically if the motion is diffusive) remains an open question.

FIG. 5. Hole propagation in a dynamically passive environment
amounts to a quantum mechanical realization of the N-puzzle
game [29], where a particular order is sought with as few tile
movements as possible. While the classical problem is NP hard,
in the quantum mechanical system, all possible trajectories are
realized in superposition.
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with ultracold atoms in optical lattices and studying the
hole dynamics using single-site resolution imaging. The
most interesting parameter regime (U=J ≫ 1, T ≫ J2=U,
deep in the MI phase at relatively high temperature) is
already widely accessible. In this limit, single-site imaging
techniques work best and can provide an unprecedented
amount of detail about hole evolution as well as the state of
the environment that is left behind. Moreover, experimen-
tally, one can reach time scales orders of magnitude longer
than in our simulations, which can be used to benchmark
experimental data at intermediate times.
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