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We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based
on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken
inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that
the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly
applicable to first principles calculations and clarifies the relation between the interaction and the electronic
band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds
Mn1−xFexGe and Fe1−xCoxGe.
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Magnets with broken inversion symmetry such as chiral
magnets and those in multilayers have been studied
intensively in recent years owing to their potential appli-
cation in nanomagnetic devices. Their attractive properties
originate from the Dzyaloshinskii-Moriya (DM) interaction
[1,2], whose Hamiltonian takes the following form in the
continuum limit:

HDM ≡
Z

d3r
X
ia

Da
i ð∇in × nÞa; ð1Þ

with n being a unit vector denoting the direction of
magnetization and Da

i the DM coefficient. While the
exchange interaction tends to align the local magnetizations
(anti)parallel, the DM interaction makes them twist, which
yields numerous magnetization structures at the nanoscale
such as helices [3] and skyrmions [4–6] and gives high
mobility to domain walls [7–11]. The DM interaction is
also a key ingredient in multiferroics since it connects
magnetizations to electric polarizations [12–14].
In 1960, Moriya [2] clarified microscopically that the

DM interaction arises at the first order of the spin-orbit
coupling of electrons. Since recent investigations involving
the DM interaction have become very diverse and precise,
its quantitative estimation scheme applicable both to metals
and insulators has been strongly demanded.
Katsnelson et al. calculated the DM interaction by

evaluating the energy increase when the magnetization is
twisted in a lattice spin model [15]. Recently, this method
has been applied to iron borate (FeBO3) to estimate the
weak DM interaction (∼0.25 meV) between iron atoms,
and it has been shown that its microscopic expression
indeed gives numerically accurate results [16]. An evalu-
ation of the twisting energy of the magnetization has been
performed also in the continuum spin model [17,18], for
example, for Mn1−xFexGe and the critical value of xc ∼ 0.8

at which the DM interaction changes its sign has been
reproduced successfully [19]. However, the relation
between the strength or sign of the DM interaction and
the electronic band structure is not clearly seen in those
formalisms based on the twist energy.
Recently, Berry’s phase formalism for the DM inter-

action was presented [20], where the relation between the
DM interaction and the electronic band structure became
clear. In this formulation, however, twist torque operators
need to be evaluated, which is not always easy. It was
recently proposed that the DM coefficient is given by a
derivative of a spin correlation function with respect to the
wave vector [21]. This spin correlation function represen-
tation has the advantage of having a direct relation between
the DM coefficient and the spin correlation function χnk for
band n and wave vector k. However, this approach turned
out to be insufficient to reproduce the value xc ∼ 0.8 for
Mn1−xFexGe at which the DM coefficient changes its
sign [21].
The aim of this paper is to present a new picture for the

emergence of the DM interaction as well as to develop a
calculation scheme for its coefficient with accuracy and
predictability. We show that the DM interaction is a
consequence of the Doppler shift due to an intrinsic spin
current induced by the spin-orbit interaction under broken
inversion symmetry. This fact leads naturally to our main
conclusion that the DM coefficient is given by the magni-
tude of the intrinsic spin current. We also develop a
rigorous derivation of the coefficient based on an effective
Hamiltonian method.
Let us start with an intuitive argument. The spin-orbit

interaction with broken inversion symmetry is generally
represented by a quantum mechanical Hamiltonian,

Hso ¼ −
X
ia

λai p̂iσa; ð2Þ
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where p̂ is a momentum operator, σ is a vector of Pauli
matrices, and λai is a coefficient specifying the amplitude of
the spin-orbit field [22]. In terms of a spin current operator,
ĵas;i ≡ ð1=2mÞp̂iσa, the interaction is written as Hso ¼
−2m

P
iaλ

a
i ĵ

a
s;i, and it thus generates an intrinsic spin

current proportional to λai . The existence of an equilibrium
spin current does not contradict the laws of thermodynam-
ics since the current does not do work as far as it is static. A
similar spin current but with a different origin is known to
arise from noncollinear spin structures [23].
We are interested in the magnetic energy of localized

spins arising from the electron carrying an intrinsic spin
current. Without the current, the energy is proportional to
ð∇nÞ2 at the second order in the hopping or in the long
wavelength limit. When a spin current is present, the spatial
variation in the localized spins seen from the electron is
modified as follows. The existence of an intrinsic spin
current jas;i ≡ visa means that the electron with a spin
polarization s is moving in the direction of the flow v
(Fig. 1). This intrinsic spin current is distorted as a result of
the sd-type exchange interaction with the localized spin.
Denoting the localized spin at site i as n, the torque on the
electron spin is proportional to n × s, and hence, the
electron spin polarization is modified to s0 ¼ sþ
ϵðn × sÞ, where ϵ is a small coefficient. When the electron
with distorted spin hops to a neighboring site j having a
localized spin direction n0, it sees the relative direction
n0 − s0. Writing n0 as n0 ≡ nþ ða ·∇Þn (a is a vector
connecting sites i and j and ∇ represents the discrete
derivative), the relative direction is n0 − s0 ¼ n − sþ
ða ·∇Þnþ ϵðs × nÞ. Recalling the fact that s is the polari-
zation of the spin current, the above expression indicates
that the spatial derivative of the localized spin structure is
modified when the electron spin media flow to be a
covariant derivative as

Din ¼ ∇inþ ηðjs;i × nÞ; ð3Þ

where η is a coefficient [24]. This covariant derivative is
interpreted as a result of the Doppler shift as seen from the
argument above. Only the component of the spin current
perpendicular to the localized spin leads to the Doppler
shift, in contrast to the spin-transfer torque effect arising
from the adiabatic (parallel) component. Similar Doppler
shift for a vector in a moving medium has been known in
the case of the velocity vector of the sound wave [25].
When the spatial derivative of the localized spin is

modified to the derivative described by Eq. (3), because
of the Doppler shift, the magnetic energy is modified to be
proportional to ðDinÞ2 ¼ ð∇inÞ2 þ 2η

P
ijs;i · ðn ×∇inÞ þ

Oðη2Þ. We see here that the DM interaction (1) arises and
that its magnitude is proportional to that of the intrinsic spin
current, Da

i ∝ jas;i. The Doppler shift interpretation of the
DM interaction is natural since the nonreciprocal propa-
gation of spin waves [26,27] is naturally explained.
The picture presented above is a classical one. We

present here a rigorous quantum mechanical derivation
based on a continuum model, focusing on the metallic case.
In the field representation, the Hamiltonian is

H ¼
Z

d3r
X
α

c†α

�
−
ℏ2∇2

i

2m
− Jαn · σþ i

2

X
i

λi · σ∇
↔

i

�
cα;

ð4Þ
where c†α and cα are electron creation and annihilation
operators for the orbit α, respectively; c†∇↔ic≡ c†∇ic −
ð∇ic†Þc and the constant λi represents the spin-orbit
interaction in the continuum with broken inversion sym-
metry. The local direction of the magnetization nðrÞ, with
n ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, is static and Jα denotes
the exchange constant. We consider here a simplified model
with the quadratic dispersion and the spin-orbit interaction
linear in the momentum but the extension to general cases
is straightforward as we demonstrate later. The effective
model (4) is derived from a multiband Hubbard model by
introducing the magnetization by use of a Hubbard-
Stratonovich transformation [28].
Considering the case of strong ferromagnets, i.e., large

Jα, we diagonalize the exchange interaction by introducing
a unitary transformation in spin space as cαðrÞ ¼
UðrÞaαðrÞ, where U is a 2 × 2 unitary matrix satisfying
U†ðn · σÞU ¼ σz (Ref. [23]). Explicitly, U is chosen
as U ¼ m · σ with m≡ ½sinðθ=2Þ cosϕ; sinðθ=2Þ sinϕ;
cosðθ=2Þ�. As a result of the unitary transformation,
derivatives of the electron field become covariant
derivatives as ∇icα ¼ Uð∇i þ iAs;iÞaα where As;i ≡P

aA
a
s;iðσa=2Þ ¼ −iU†∇iU is an SUð2Þ gauge field,

called a spin gauge field, coupling to the electron
spin. Explicitly, As;i ¼ n × ∇in − Az

s;in, where Az
s;i≡

ð1 − cos θÞ∇iϕ. The Hamiltonian for the electron in the
rotated frame is H ¼ H0 þHA, where

FIG. 1. Schematic picture showing the mechanism of the spin
current Doppler shift. The polarization s of the spin current
intrinsically determined by the spin-orbit interaction is deviated
because of a torque due to the localized spin n. This deviation
corresponds to the change of the electron spin’s laboratory frame
and is described by a covariant derivative. The effect leads to a
shift in the frequency of the localized spin dynamics, i.e., the
Doppler shift.
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H0≡
Z

d3r
X
α

a†α

�
−
ℏ2∇2

i

2m
− Jασz þ

i
2

X
i

~λi · σ∇
↔

i

�
aα;

ð5Þ

with ~λai ≡P
bRabλbi [Rab ≡ 2mamb − δab being the SOð3Þ

rotation matrix corresponding to U] and

HA≡
Z

d3r
X
α

�X
ia

~̂j
a
s;α;iAa

s;iþ
ℏ2

8m
n̂el;αðAa

s;iÞ2
�
: ð6Þ

Here, ~̂j
a
s;α;i ≡ −ðiℏ2=4mÞa†ασa∇

↔

iaα − 1
2
~λai n̂el;α is the spin

current density operator in the rotated frame and
n̂el;α ≡ a†αaα. Equation (6) indicates that the spin gauge
field couples to the spin current density. The information of
the magnetization vector n is included in the rotated spin-
orbit coupling ~λai and the spin gauge field Aa

s;i.
Our objective is to derive an effective Hamiltonian

describing the magnetization by integrating out the
conduction electrons. Here, we are interested in the DM
interaction (1), and it is sufficient to consider the first
order derivative terms. The effective Hamiltonian is
therefore

Heff ¼
Z

d3r
X
αia

~jas;α;iAa
s;i; ð7Þ

where ~jas;α;i ≡ h~̂jas;α;ii is the expectation value of the spin
current density in the rotated frame, which is related to the
one in the laboratory as jas;α;i ¼

P
bRab

~jbs;α;i. By use of the
identity

P
bRabAb

s;i ¼ ð∇in × nÞa þ naAz
s;i, the effective

Hamiltonian reads

Heff ¼
Z

d3r

�X
ia

Da
i ð∇in × nÞa þ

X
i

j∥s;iA
z
s;i

�
; ð8Þ

where j∥s;i ≡
P

α
~jzs;α;i ¼ n ·

P
αjs;α;i, and

Da
i ≡

X
α

j⊥;a
s;α;i ð9Þ

with j⊥;a
s;α;i ≡ jas;α;i − naj∥s;α;i [31–33]. We see that the DM

coefficient is simply given by the expectation value of the
spin current density of the conduction electrons. Since
n · ð∇in × nÞ ¼ 0, only the perpendicular component con-
tributes to the DM interaction, which is consistent with the
intuitive Doppler shift argument [Eq. (3)].
A great advantage of the present formulation for material

design is that Eq. (9) enables the prediction of the DM
coefficient based on the features of the band structure. Let
us consider three typical spin configurations of a conduc-
tion electron in the momentum space, the Rashba (which
arises in polar systems), the Dresselhaus, and the Weyl
(in chiral systems), represented by the Hamiltonians

HR ¼ αðkxσy − kyσxÞ, HD ¼ βðkxσx − kyσyÞ, and HW ¼
γðkxσx þ kyσyÞ, respectively. The schematic spin textures
are shown in Fig. 2. The DM coefficients in those cases
(denoted by DR, DD, and DW , respectively) are

Da
R;i ¼ αnel

0
B@

0 1 0

−1 0 0

0 0 0

1
CA;

Da
D;i ¼ βnel

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

Da
W;i ¼ γnel

0
B@

1 0 0

0 1 0

0 0 0

1
CA; ð10Þ

where nel is the electron density and the row and column
correspond to spatial (i) and spin (a) indices, respectively.
We therefore see that polar systems lead to antisymmetric
DM coefficients while diagonal coefficients are expected in
nonpolar systems, as discussed also in Refs. [34,35] by a
different approach.
As for the DM coefficient, our result Eq. (9) agrees with

that of Ref. [15], derived by evaluating the energy increase
when the magnetization is twisted by a local spin rotation.
The expression for the energy increase turned out to be the
expectation value of the anticommutator of the spin rotation
operator and the hopping matrix element, which is essen-
tially the spin current density. On the other hand, the
expression discussed in Ref. [21],D ∝ ½∂χðqÞ=∂q�jq¼0 (χ is
the spin correlation function with wave vector q), and the
ones obtained by a Ruderman-Kittel-Kasuya-Yosida
approach [36–38] are valid when the exchange interaction,
Jαn · c†ασcα in Eq. (4), is weak enough and can be treated
perturbatively. In contrast, in our method, which uses a
unitary transformation, a strong exchange interaction is
assumed [39].
To examine this approach quantitatively, we perform

relativistic electronic-structure calculations for the B20
chiral ferromagnet, FeGe, using quantum- ESPRESSO code
[40]. We treat exchange and correlation effects within
the Perdew-Burke-Ernzerhof (PBE) generalized-gradient

FIG. 2. Spin texture in momentum space for (a) Rashba,
(b) Dresselhaus, and (c) Weyl-type Hamiltonians.
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approximation [41] and use ultrasoft pseudopotentials [42]
with plane-wave cutoffs of 50 Ry for wave functions and of
400 Ry for charge densities, respectively. Brillouin-zone
(BZ) integration is carried out on a 8 × 8 × 8 k-point mesh.
To discuss the atomic composition dependence for
Mn1−xFexGe and Fe1−xCoxGe, we compute the self-
consistent charge densities for several different carrier
densities by fixing the atomic geometries and the lattice
constant to the experimental values of FeGe. In all cases,
we assume the total magnetic moment in each unit cell to be
aligned along the z axis.
To calculate the DM coefficient using Eq. (9) from the

first principles, we consider a general form of the spin
current density as follows:

jas;i ¼
1

4
Tr

X
k

hc†kðviσa þ σaviÞcki; ð11Þ

where Tr is taken over the orbital and spin space, and
the velocity operator is defined as vi ¼ dHk=dki with
Hk ¼ e−ik·xHeik·x. Because of the symmetry of B20 mag-
nets, we focus on Dx

x ¼ jxs;x and Dy
y. In fact, the other

components of Da
i are found to be negligible compared to

Dx
x and Dy

y. For the BZ integration in Eq. (11), we employ
the Wannier interpolation technique [43–45] with Fe 3d
and Ge 4p orbitals. The calculations below are performed
on a 32 × 32 × 32 k-point mesh. We confirmed that the
results on a 64 × 64 × 64 k-point mesh do not differ much
from the results of 32 × 32 × 32 k-point calculations.
For comparison, we also calculate the DM coefficient

using the energies of helical spin structures [17,18]. We
assume the helical spin moment to be MqðrÞ ¼ M½cosðq ·
rÞ; sinðq · rÞ; 0� with q ¼ ð0; 0; qÞ using the generalized
Bloch theorem [46] and calculate the energies of electronic
structures, EðqÞ, by the VASP code [47,48] within the PBE
generalized-gradient approximation. We use projector aug-
mented wave pseudopotentials with a plane-wave cutoff of
500 eV and a 10 × 10 × 10 k-point mesh. Within the
continuum model, the energies of the helical spin structures
can be easily obtained as EðqÞ ¼ Dqþ Jq2. Thus, by
extracting the first order in q, we can estimate the DM
coefficient.
Figure 3 shows the DM coefficients for Mn1−xFexGe and

Fe1−xCoxGe obtained using the two approaches. The result
obtained by evaluating EðqÞ for Mn1−xFexGe is consistent
with Ref. [19] around x ¼ 1, while the values are slightly
different around x ¼ 0. This is because Ref. [19] uses the
virtual crystal approximation and x-dependent crystal
structures. As can be seen, the results of the two methods
agree well with each other. Furthermore, both calculations
well reproduce the position of the sign change observed
in experiments, xc ∼ 0.8 for Mn1−xFexGe [49,50] and
xc ∼ 0.6 for Fe1−xCoxGe [51].
In our approach, it is easy to discuss the relationship

between the DM interaction and the band structure [52]. In
fact, we can rewrite Eqs. (9) and (11) as

D ¼
X
nk

DnkfðϵnkÞ ¼
Z

DðEÞfðEÞdE; ð12Þ

where n is the band index and fðEÞ is the Fermi distribution
function. The first equation defines the contribution of
each band to the DM interaction, Dnk, and the second
equation defines the density of the DM interaction, DðEÞ.
Figure 4(a) shows Dnk for the band structure of FeGe. As
discussed before [21], we find that the band anticrossing
points are important for the DM interaction. The density of
the DM interaction, DðEÞ, shown in Fig. 4(b), also gives
useful information to discuss the carrier density depend-
ence of the DM interaction. That is, in this case, DðEÞ < 0
for E < 0 and DðEÞ > 0 for E > 0 indicate the dip
structure around FeGe (E ¼ 0) and the resulting two sign
changes in Mn1−xFexGe and Fe1−xCoxGe.
In summary, we have shown that the origin of the DM

interaction is the Doppler shift due to an intrinsic spin
current induced by the spin-orbit interaction under broken
inversion symmetry. The idea was confirmed by a rigorous
effective Hamiltonian approach, and an ab initio formalism
to calculate the DM constant with quantitative accuracy
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FIG. 3. The DM coefficients D for Mn1−xFexGe and
Fe1−xCoxGe calculated using the energies of helical spin struc-
tures, EðqÞ ¼ Dqþ Jq2, and as expectation values of the
equilibrium spin current D ¼ hĵsi. The error bars for each
calculation indicate the fitting errors of EðqÞ and the variances
of Dx

x and Dy
y, respectively.
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FIG. 4. (a) Contribution of each band to the DM interaction,
Dnk, with dominant band anticrossing points circled, and (b) the
energy distribution of the DM interaction, DðEÞ (black line), for
FeGe. The Fermi energy dependence of the DM interaction,
D≡ R

EF DðE0ÞfðE0ÞdE0, within the rigid band approximation is
also shown as the red line.
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was developed. Our identification of the DM constant as
the spin current density will be useful for analyzing
multilayered systems [53–55]. The formalism developed
in this paper is directly applicable also to nonequilibrium
cases such as strain and voltage control of the DM
interaction [56–61].
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