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Following the recent observation of localized phonon polaritons in user-defined silicon carbide
nanoresonators, here we demonstrate strong and coherent coupling between those localized modes and
propagating phonon polaritons bound to the surface of the nanoresonator’s substrate. In order to obtain
phase matching, the nanoresonators have been fabricated to serve the double function of hosting the
localized modes, while also acting as a grating for the propagating ones. The coherent coupling between
long lived, optically accessible localized modes, and low-loss propagative ones, opens the way to the
design and realization of phonon-polariton based coherent circuits.

DOI: 10.1103/PhysRevLett.116.246402

Surface phonon polaritons are surface-bound, propaga-
tive modes arising from collective oscillations of ions at the
surface of polar crystals, analogous to surface plasmon
polaritons on metallic surfaces [1,2]. When the surface is
properly patterned, it can sustain also localized surface
phonon polaritons, confined in extremely subwavelength
volumes and characterized by quality factors and Purcell
enhancements unparalleled in plasmonic systems [3,4].
Patterning, apart from creating the localized modes, also
acts as a grating for phase matching to propagating surface
polaritons [5], allowing us to tune their dispersion, and
making it possible to bring them in resonance with the
localized ones. The possibility to couple long lived local-
ized resonances that can be resonantly pumped by an
external source to low-loss propagative modes, with propa-
gation lengths of hundreds of micrometers [6], hints to the
tantalizing prospect to observe quantum effects in those
systems, analogously to what was done with surface
plasmon polaritons [7–9]. Moreover, the unique properties
of phonon polariton resonators could lead to the realization
of phonon-polariton based quantum circuits, overcoming
the main problems hampering the development of quantum
plasmonic circuits [10]. Here, using a silicon carbide (SiC)
surface patterned by micrometer-sized cylinders, we dem-
onstrate strong coupling between localized and surface
modes by presenting clear evidence of spectral anticross-
ing, thus implying a coherent, reversible energy exchange
[11,12]. Our work thus validates different building blocks
toward a novel technological platform for coherent mid-
infrared applications.
How tightly light of a given frequency may be confined

is limited by the bandwidth of spatial frequencies available.
The most famous example of this is the Abbe diffraction
limit but the phenomenon is pervasive. Piecewise homo-
geneous material systems can sustain electromagnetic
resonances localized around interfaces where the permit-
tivity changes sign, the out-of-plane wave vector becoming

imaginary and the bandwidth of spatial frequencies in-
plane increasing. For a flat surface between air and a
material with negative permittivity ϵðωÞ, this leads to
surface modes characterized by the well-known dispersion

q ¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðωÞ

ϵðωÞ þ 1

s
; ð1Þ

where q is the in-plane wave vector and c is the speed
of light. Surface plasmon polaritons are well-known
surface modes in metals, whose Drude permittivity
ϵDðωÞ ¼ 1 − ðω2

P=ω
2Þ becomes negative due to the cou-

pling with collective plasma excitations in the region below
the plasma frequency ωP [13]. Strong field localizations are
achievable in plasmonic systems, with good applications in
waveguiding [14] and usually inefficient processes such as
Raman spectroscopy [15]. Still, plasmons are inherently
lossy [16], the modal energy spending half cycles as
electron kinetic energy, leading to a dominant loss channel
of electron-electron scattering occurring on the 0.01-ps
scale [17], thus making it challenging to integrate them
in quantum technology architectures [10,18]. As an alter-
native platform to metals, also polar dielectrics support
surface polaritons in between the frequencies of the
transverse optical phonon, ωTO, and the longitudinal
optical phonon, ωLO, where the Lorentz permittivity
ϵLðωÞ ¼ ½ðω2 − ω2

LOÞ=ðω2 − ω2
TOÞ� becomes negative as

a result of light coupling to oscillations of the ions [19].
The damping of the ionic oscillations occurs on the 1-ps
scale, 2 orders of magnitude slower than electron damping
in metals. The resulting modes, called surface phonon
polaritons [1], have been exploited for a number of
applications, from enhanced energy transfer [20] and
waveguiding [21] to thermal coherent infrared emission
[22,23], superlensing [24,25], near field optics [26],
enhanced optical forcing [27], and sensing [28]. More
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exotic physics is expected in recently observed hyperbolic

materials such as hexagonal boron nitride [29].
Analogously to localized plasmonic resonances, localized
phonon resonances also appear in subwavelength dielectric
systems. Mutschke [30] carried out explicit investigations
into the infrared properties of small SiC particles of various
polytype observing morphology dependent resonances
analogous to particle plasmons. Subwavelength SiC whisk-
ers have also been shown to support both localized
electrostatic and propagative Fabry-Perot modes [3].
Recently, advances in fabrication procedures have allowed
for the creation of user-defined cylindrical SiC nanoreso-
nators on SiC substrate [4,31]. The modes exhibit quality
factors exceeding the theoretical limit for plasmonic res-
onators. Moreover, while absolute confinement of light is
less than in plasmonic systems due to the longer wave-
lengths involved, reducing potential nonlinear effects,
relative confinement (in units of the wavelength) is com-
parable with the better plasmonic resonators [32], leading

to Purcell enhancements 4 orders of magnitude greater than
comparable plasmonic systems [4].
We used a 9.7 μm thick planar 3C-SiC layer grown over

Si substrate, on which subwavelength cylindrical resona-
tors of height ≃800 nm and diameter ≃1 μm were fab-
ricated by ICP RIE in square 70 × 70 pillar arrays of
varying periods from 5 to 7 μm. Numerical calculations
show this depth of SiC is sufficient for convergence of
reflectance measurements to those of bulk SiC, as can also
be inferred from the inset in Fig. 1(a) where we see that the
electric field of the surface mode in the dielectric is
completely segregated into the SiC region. Full details
on the fabrication can be found in the Supplemental
Material [33]. The planar surface supports a surface mode
whose dispersion, ωs

q, is given by Eq. (1) with ϵðωÞ the
dispersive SiC dielectric function. While the surface polar-
iton dispersion usually lies outside the light cone, the
periodic patterning of the substrate results in a period-
dependant band folding of the dispersion at the edge of the
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FIG. 1. (a) Fundamental dispersion of the surface mode is given by the black curve. Solid blue curves indicate surface mode folding
from the edge of the first Brillouin zone (indicated by corresponding vertical dashed lines) for periodicities 5–7 μm. The red curve
shows the vacuum light line. The inset shows the electric field norm for a surface mode at an air/SiC interface. The gray shaded region in
the inset shows the beginning of the Si substrate on which the SiC wafer we used is grown, highlighting that the surface mode is almost
entirely localized into the SiC region. (b) Tight-binding dispersion of the monopolar mode of a pillar array is indicated by blue curves for
a variety of periodicities. The red curve is the vacuum light line, with c the speed of light. Insets show a slice of the mode electric field
norm in an isolated SiC cylinder on substrate, calculated using COMSOL MULTIPHYSICS, and a SEM image of a fabricated resonator.
(c) SEM image of the fabricated array. (d) Electric field norm for a mode of the coupled array. The sinusoid indicates the surface mode
wavelength.
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first Brillouin zone, as illustrated in Fig. 1(a), thus making
them optically accessible. In the inset the electric field norm
of a surface mode is plotted. The isolated cylinder-on-
substrate system supports a number of modes as discussed
in Ref. [31]. For the remainder of this Letter we will only
consider the monopolar mode whose electric field norm is
shown in the lower inset of Fig. 1(b). This mode is a
longitudinal mode of the cylinder mediated by the substrate
resulting in charging of the pillars with neutrality assured
by the interstitial substrate [4]. In the upper inset of the
same image we also show a SEM image of a single pillar.
The eigenmodes of the resonator array are periodic Bloch
waves, with charges oscillating between the pillars and the
substrate in between, whose dispersion ωm

q is derived in the
Supplemental Material [33] following the methods of Yariv
[34]. This is illustrated in Fig. 1(b) for a selection of
periodicities. In Fig. 1(c) a SEM image of the sample
is shown.
As the folded dispersion of the surface phonon polaritons

eventually intersect the almost dispersionless localized
monopolar mode, we expect the two modes to interact.
We can thus exploit the quantum formalism usually
employed to describe strongly coupled polaritons
[35,36]. Introducing a phenomenological Rabi frequency
g0 coupling the two modes, which in a classical electro-
magnetic approach would describe the overlap between the
surface and monopolar modes, we can describe the coupled
system, in the rotating wave approximation, by the
Hamiltonian

H ¼
X
q

ℏωm
q â

†
qâq þ ℏωs

qb̂
†
qb̂q þ ℏg0ðâ†qb̂q þ âqb̂

†
qÞ; ð2Þ

where âq and b̂q are the bosonic creation operators for the
monopolar modes and surface modes, respectively. As
detailed in the Supplemental Material [33], the
Hamiltonian in Eq. (2) can be diagonalized by a
Hopfield-Bogoliubov procedure [37] in terms of two free
normal modes, whose annihilation operators read

p̂þ
q ¼ Xqâq þ Yqb̂q; p̂−

q ¼ Yqâq − Xqb̂q; ð3Þ

where Xq and Yq are the Hopfield coefficients describing
the mixing of surface and localized modes and the
frequency of the normal modes is

ω�
q ¼

ωm
q þ ωs

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωm

q − ωs
qÞ2 þ 4g20

q

2
: ð4Þ

The simulated electric field norm for a mode of the coupled
system is shown in Fig. 1(d), where for comparison, and in
order to highlight the subwavelength character of the
coupling, we explicitly show a typical wavelength for
the resonant surface mode. A typical dispersion of the
normal modes, from Eq. (4), is shown by the dot-dashed

lines in Fig. 2(a), in which it is clear how the coupling
between localized and surface modes leads to an anticross-
ing in the dispersion of the normal modes. Fabricated arrays
were measured by FTIR microscopy in reflectance mode
utilizing a grazing incidence objective. The objective
illuminates directionally and the sample is aligned so the
peak incident intensity is along the principal axis of
the resonator array. Details of the measurement are given
in the Supplemental Material [33]. High-angle illumination
is achieved by use of amirror to rotate the incident beamonto
the sample resulting in a dual peaked angular excitation as
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FIG. 2. (a) Dispersion for array period 6.25 μm and coupling
constant g0 ¼ 1.63 meV (13.1=cm). Purple dotted lines are the
constituent monopolar and folded surface phonon polariton
branch, coupled normal modes are green dash-dotted lines. Blue
dashed lines represent the two different angles θ1 and θ2 sampled
by the dual illumination. Squares and circles are the fitted data
points from the reflectance plots in the Supplemental Material
[33]. (b) Illustration of the function of the grazing incidence
objective. A Schwarzschild light path is indicated by angularly
symmetric blue rays. The plane mirror at the bottom breaks the
cylindrical symmetry of the objective rotating the light cone,
initially at an incidence angle θ, toward the sample. After
reflecting upon the sample surface the beams strike a spherical
mirror and are refocussed on the same spot before passing back
into the objective. This results in a dual non-normal double-pass
illumination at angles θ1 and θ2. Notice that the separation
between the two rays is exaggerated here for clarity purpose. The
actual data for both the rays’ incidence angles and their angular
spread can be found in the Supplemental Material [33].
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illustrated in Fig. 2(b). This allows two slices of the polariton
dispersion to be measured simultaneously as shown in
Fig. 2(a). Note that we have until now neglected losses in
our theoretical treatment, on account of the large quality
factors of both localized and surface phonon polaritons. Still,
it is important to remember that the anticrossing shown in
Fig. 2(a) is present only if the Rabi frequency g0 is larger than
the losses of both modes, including pure dephasing [11], a
condition usually referred to as strong coupling regime.
Observing an anticrossing in the system spectrum thus
unequivocally proves that energy can be reversibly and
coherently exchanged between the two modes, fulfilling
the main requirements to use them as building blocks for
coherent circuit architectures [12]. The experimental reflec-
tancemapweobtained is given inFig. 3(a) as a functionof the
array period, that is tuning the surface mode resonance. The
data exhibit a clear anticrossing when the two modes are
resonant, showing that the system is indeed in the strong
coupling regime. Peak positionswere then extracted from the
experimental reflectance map, clearly highlighting the pres-
ence of peaks from two different angles, not apparent in
Fig. 3(a) due to the small angular shift and finite linewidth.
Individual spectra measured for each array period, and the
relative calculated fits can be found in the Supplemental
Material [33]. The data was then fitted, following the
procedure detailed in the Supplemental Material [33], to
the normal mode dispersion given in Eq. (4). The phenom-
enological coupling g0 was assumed to vary superradiantly
with the in-plane resonator density analogously to scalings in
systems where surface plasmons interact with molecular
excitons, where in our case the resonators act as effective
molecules [38]. The peak positions extracted from the
experimental data and the resulting fits are given in
Fig. 3(b), where we explicitly show the dispersions at the
two different angles. The model reproduces well the anti-
crossing,within errors of the order of 1meV (8=cm), a similar
magnitude to those reported in previous simulations using
finite elementmodeling [4]. Those errors have been attributed
to modifications of the dielectric properties of SiC near the
surface due to the strain induced inSiCgrownonSi substrates
due to the mismatch of lattice parameters [39]. In order to
verify this hypothesis we repeated the fitting procedure using
the high and low frequency values of the dielectric constants
and the TO phonon frequency as additional fit parameters.
The resulting values for the dielectric parameters differ less
than 5% from the standard values found in the literature [19]
and the TO phonon shifts just 0.74 meV (6.1=cm), but they
lead to a dramatic improvement of the fits, shown in Fig. 3(c).
The maximal value of the fitted Rabi frequency is g0 ¼
2.55 meV (20.6=cm), leading to a ratio between g0 and the
bare frequency of the excitation of the order of 10−2, thus
justifying a posteriori the rotating wave approximation we
used in Eq. (2) [40]. We also extracted the linewidths of the
different normal modes from the reflectance map, and we
were able to fit them assuming they are sums of the

constituents’ones, weighted by the relative Hopfield coef-
ficients [41]. We found linewidths at the anticrossing of the
order of 1 meV (8=cm). In the densest array we considered,
energy is thus coherently transferred betweenmonopolar and
surfacemodes roughly 4 times before escaping.More details,
including the extracted experimental linewidths, can be found
in the Supplemental Material [33].
In summary, we have demonstrated that, exploiting the

tunability of surface phonon polaritons dispersion, it is
possible to observe a clear spectral anticrossing between
localized and surface phonon polaritons, proving that
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FIG. 3. The top panel (a) shows the background subtracted
experimental reflectance map of SiC cylinder arrays of varying
period. The almost dispersionless mode at 113.75 meV
(917.4=cm) is the transverse dipole resonance discussed else-
where [4]. The peaks extracted from the reflectance map are given
in the lower panels for the larger angle by blue squares and the
smaller by red circles. Solid blue lines and dashed red lines are
the corresponding fits, enacted using book values for the
dielectric constants of SiC (b) [19], or fitting also the dielectric
constants of SiC (c) as free parameters.
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coherent, reversible energy exchange is possible between
them. In combination with the high confinements and
Purcell enhancements recently observed in user-defined
structures, the present Letter takes a decisive step in
demonstrating the versatility and tunability of phonon
polaritons for coherent applications in the midinfrared
spectral region. In particular, the coherent interplay between
localized and propagative, nonradiative modes, together
with the relatively large quality factors achievable in those
systems, could make it possible to design quantum archi-
tectures similar to quantum plasmonic circuits, but without
many of the limitations due to plasmon intrinsic losses.
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