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We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional
semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where
two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant
temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less
important and can be considered negligible at n≳ 1013 cm−2. At smaller n, however, phonons enter in the
essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy
between the principal directions of BP (μxx=μyy ∼ 1.4 at n ¼ 1013 cm−2 and T ¼ 300 K), the electron
mobility is found to be significantly more anisotropic (μxx=μyy ∼ 6.2). Absolute values of μxx do not exceed
250 ð700Þ cm2 V−1 s−1 for holes (electrons), which can be considered as an upper limit for themobility in BP
at room temperature.
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Electron-phonon scattering is considered to be the main
factor limiting intrinsic charge-carrier mobility in graphene
[1–7]. Flexural phonons (out-of-plane vibrations) are espe-
cially important in this respect because they provide the
dominant contribution to the resistivity at room temperature
[6,7]. Recently, many new two-dimensional (2D) materials
have attracted attention [8], such as hexagonal boron nitride
[9], stoichiometric graphene derivatives [10,11], transition-
metal dichalcogenides [9,12], and black phosphorus (BP)
[13]. All these materials are typically more defective than
graphene and are characterized by significantly smaller
electron mobility; therefore, much less is known exper-
imentally of their intrinsic transport properties [14–21].
Comprehensive theories have been developed to describe

the mechanism of phonon scattering in graphene [7].
The application of those is, however, not straightforward
to systems with reduced symmetries that give rise to
anisotropy of electronic and vibrational properties. At the
same time, anisotropy of 2D materials in not uncommon. It
can naturally arise in finite-size samples and be governed by
the shape (e.g., nanoribbons) [22] or can be determined by
external conditions such as defects [23], mechanical strain
[24], or contact potentials [25]. Few-layer black phosphorus
is the most prominent example among 2D materials
with inherent anisotropy [13]. Early attempts to describe
intrinsic mobility in ultrathin BP were based on isotropic
transport theory and were focused on single-phonon
processes only [26,27].
In this Letter, we develop a theory for phonon-limited

transport in anisotropic 2D semiconductors. We obtain
general expressions for the scattering matrix of single- and
two-phonon processes, where both in-plane and flexural
acoustic phonons are included. The theory is applied
to monolayer black phosphorus, for which the relevant
parameters are estimated from first principles.

For isotropic materials, phonon limited dc conductivity is
usuallycalculatedusing the standardsemiclassicalBoltzmann
theory [28]. The solution of the anisotropic Boltzmann
equation is more involved even within the simple effective
mass approximation [29,30]. Here, we use an alternative
approach, namely, the Kubo-Nakano-Mori method, which
does not rely on any symmetry constraints; it is equivalent
to the variational solution of the Boltzmann equation in the
isotropic limit at kBT ≪ εF [1], where kBT is the temperature
in energy units and εF is the Fermi energy. The formula for
the x component of the conductivity reads [28]

σxx ¼
e2

2S

X
k

τxxvx2k

�
−

∂f
∂εk

�
; ð1Þ

where e is the elementary charge, S is the sample area, vxk is
the x component of the carrier velocity, f ¼ f1þ exp½ðεk −
εFÞ=kBT�Þg−1 is the Fermi-Dirac distribution function, εk is
the carrier energy, and τxx can be understood as the scattering
relaxation time of carriers in the x direction. In Eq. (1) we
assume that cross terms such as τxy can be eliminated
for symmetry reasons. In turn, the expression for τxx has
the form [1]

1

τxx
¼ π

ℏ

P
kk0δðεk − εk0 Þð− ∂f

∂εkÞðvxk − vxk0 Þ2hjVeff
kk0 j2iP

kv
x2
k ð− ∂f
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; ð2Þ

wherek ¼ k0 þ qwithq being the phononwavevector,Veff
kk0

is the scattering matrix, and h:::i denote ensemble averaging
over the phonon states. We note that Eq. (2) is derived
assuming that carrier scattering is elastic, i.e., the phonon
energy satisfiesℏωðq ≈ kFÞ ≪ εðkFÞ,wherekF is the Fermi
wave vector. Importantly, Eq. (2) does not assume that the
scattering is isotropic.

We now turn to the evaluation of electron-phonon scatter-
ing matrices, hjVeff

kk0 j2i. In principle, those can be accurately
calculated from first principles using well-established
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interpolation techniques [31]. Such numerical approaches,
however, are very sensitive to the Brillouin zone (BZ)
sampling and thus are hardly applicable to two-phonon
processes, whose description involves additional BZ integra-
tion. Here, we restrict ourselves to the long-wavelength limit
and derive hjVeff

kk0 j2i analytically for both single- and two-
phonon processes using the concept of deformation poten-
tials. Apart from being general, in certain cases our approach
allows one to analytically calculate the scattering rates given
byEq. (2). Similar approaches have been previously followed
to describe single-phonon scattering in 3D materials [32].
For 2D materials with orthorhombic (and higher)

symmetries, elastic energy associated with in-plane defor-
mations in the harmonic approximation reads [33]

Ē ¼ 1

2

Z
d2r½C11u2xx þ C22u2yy þ 2C12uxxuyy þ 4C66u2xy�;

ð3Þ
where uxx, uyy, and uxy are components of the strain
tensor, and C11, C22, C12, and C66 are elastic constants. In

the long-wavelength limit, the effective scattering potential
of charge carriers induced by in-plane acoustic phonons V̄eff

q
can be written in terms of the diagonal components of the
deformation potential tensor ḡα (α ¼ x, y) as V̄eff

q ¼ ḡαuqαqα
(summation over repeated Greek indices is implied through-
out the Letter),whereuqα is theα component of the reciprocal
displacement vector uq. Taking the square of V̄eff

q and
averaging over the phonon states, we get

hjV̄eff
q j2i ¼ hu�qαuqβiḡαḡβqαqβ; ð4Þ

where hu�qαuqβi ¼ kBTðAqÞ−1αβ is the temperature-dependent
correlation function for in-plane fields with Aq

αβ being the
reciprocal force-constant matrix [34]. Here, we utilized the
fact that phonons can be considered classically at moderate
temperatures, i.e., ℏωðq ≈ kFÞ ≪ kBT, which always holds
for jkFj ≪ a−1, where a is the interatomic distance. The
same criterion ensures that the effect of the wave function
overlap between the initial and final states is negligible [41].
The final expression for the scattering matrix associated
with in-plane phonons takes the form

hjV̄eff
q j2i ¼ kBT

C66ðḡ2xq4x þ ḡ2yq4y − 2ḡxḡyq2xq2yÞ þ ðC22ḡ2x þ C11ḡ2y − 2C12ḡxḡyÞq2xq2y
C66ðC11q4x þ C22q4y − 2C12q2xq2yÞ þ ðC11C22 − C2

12Þq2xq2y
: ð5Þ

Unlike the isotropic case (C11 ¼ C22), where hjV̄eff
q j2i ¼

kBTḡ2=C11 doesnot dependonq, the scatteringprobability of
anisotropic systems displays a sophisticated q dependence.
Let us now consider scattering on flexural phonons.

Here, we focus on two-phonon processes only because
single-phonon scattering involving flexural modes in BP is
symmetry forbidden. Indeed, the point group (D2h) corre-
sponding to the space group of BP (D7

2h) contains horizontal
mirror plane symmetry operation (σh) [42], meaning that
the scattering potential V̄eff

q is odd with respect to flexural
deformations. This ensures that the corresponding matrix
element hjV̄eff

q j2i vanishes [43].
In the presence of pure flexural deformations, elastic

energy of an anisotropic membrane can be written as

~E ¼ 1

2

Z
d2r½κxð∂2

xhÞ2 þ κyð∂2
yhÞ2 þ 2κxy∂2

xh∂2
yh�; ð6Þ

where h ¼ hðx; yÞ is a field of out-of-plane displacements,
and κx, κy, and κxy are constants determining the flexural
rigidity of the membrane. In this case, the scattering
potential is given by ~Veff

q ¼ ~gαβfαβðqÞ, where fαβðqÞ ¼
−
P

k1
k1αðqβ − k1βÞhk1

hq−k1
is the Fourier component

corresponding to the tensor of flexural deformations
fαβðrÞ ¼ ½∂hðrÞ=∂xα�½∂hðrÞ=∂xβ�. After straightforward
manipulations [34], the scattering probability due to acoustic
flexural phonons takes the form

hj ~Veff
q j2i ¼

X
p

½~gxpxðqx − pxÞ þ ~gypyðqy − pyÞ�2

× hhph−pihhp−qhq−pi; ð7Þ

where the correlation function can be expressed as [1]

hhqh−qi ¼
kBT

ð ffiffiffiffiffi
κx

p
q2x þ ffiffiffiffiffi

κy
p q2yÞ2

; ð8Þ

assuming that κxy ¼ ffiffiffiffiffiffiffiffiffi
κxκy

p . Substituting Eq. (8) into Eq. (7)
and evaluating the integral over pwith logarithmic precision
one finds [34]

hj ~Veff
q j2i¼ k2BT

2 ~g2x
4πr1=2κ2x

�
1

q2xþrq2y

���
1−

8rq2xq2y
ðq2xþrq2yÞ

�ð1−pÞ2
2

þq2x−rq2y
q2xþrq2y

ð1−p2Þ lnγþð1þp2Þ lnγ

þð1þpÞ2
4

�
; ð9Þ

where we used the notation r ¼ ðκy=κxÞ1=2 and p ¼
½ð~gy=~gxÞ=ðκy=κxÞ1=2�. In Eq. (9), γ ¼ k̄=jq�j, where k̄ is a
characteristic carrier wave vector (k̄ ≫ jq�j) and q� is the
critical wave vector, which determines the applicability
of the harmonic approximation, i.e., independent carrier
scattering on in-plane and flexural phonons [44,45]. As for
in-plane phonons, scattering matrix for flexural phonons
exhibits a nontrivial q dependence compared to the isotropic
case, where hj ~Veff

q j2i ∼ k2BT
2=jqj2.

In 2Dmaterials with degenerate valleys like graphene and
transition metal dichalcogenides, there is another important
contribution to the scattering probability arising from the
variation of hopping integrals upon deformation. This effect
is equivalent to the presence of a gauge potential acting with
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opposite sign at each valley [46], which shifts the position of
valleys in BZ, leading to an additional scattering channel
limiting mobility [6,47–50]. However, for single-valley
systems like BP, such effects are forbidden as the position
of the band edges in k-space is protected by time-reversal
symmetry. As can be explicitly shown within a tight-binding
model [51], the variation of hopping integrals in BP is fully
captured by the deformation potentials.
We now apply the presented theory for the calculation

of direction-dependent carrier mobility in BP. We first
determine parameters appearing in the expressions for the
scattering matrix [Eqs. (5) and (9)], i.e., elastic constants
and deformation potentials, from first principles. In Fig. 1,
we show the elastic energy and band-edge shifts induced
by in-plane and out-of-plane deformations calculated using
density functional theory (DFT) [34]. Elastic constants can
be obtained by fitting DFT energy curves to the macro-
scopic expressions given by Eqs. (3) and (6) noting
that C11 ¼ Yxxð1 − νxyνyxÞ−1, C22 ¼ Yyyð1 − νxyνyxÞ−1,
C12 ¼ C11νxy ¼ C22νyx, and C66 ¼ Gxy. Here, Yxx, Yyy,
and Gxy are 2D Young moduli and shear modulus,
respectively, whereas νxy ¼ 0.70, νyx ¼ 0.16 are Poisson
ratios directly obtained from DFT calculations. The defor-
mation potentials are determined similarly by fitting the
corresponding DFT electron (hole) band shifts as shown
in Figs. 1(c) and 1(d). For symmetry reasons mentioned
above, flexural deformations do not induce linear terms in
the band shifts [see Fig. 1(d)].

Dispersion εk of both electrons and holes in BP exhibits
considerable deviations from the parabolic law, yielding
energy-dependent density of states (DOS) as shown in
Fig. 2. To capture the effects of nonparabolicity in the
mobility calculations, we use the energy-dependent effec-
tive mass approximation [34], which demonstrates good
agreement with the results of first-principles GW calcu-
lations (Fig. 2).
The results on intrinsic mobility of electrons and holes

in BP are presented in Fig. 3. The total mobility in a
specific direction is defined adopting Matthiessen’s rule,
μ−1 ¼ μ̄−1 þ ~μ−1, where μ̄ ¼ σ̄=ne ( ~μ ¼ ~σ=ne) is the cor-
responding contribution from single-phonon (two-phonon)
processes. At n≳ 1013 cm−2, i.e., in the regime where
the harmonic approximation is applicable [lnðk̄=q�Þ > 1],
single-phonon processes dominate for both electrons and
holes at any practically relevant temperatures. This obser-
vation is in stark contrast with graphene, where two-
phonon processes dominate independently of n [6,7].
Let us assume that the electron gas is degenerate
(εF=kBT ≫ 1). The corresponding ratio of single-phonon
μ̄xx and two-phonon ~μxx mobilities then reads [34]

μ̄xx
~μxx

¼
�
~gx
ḡx

�
2
�
~Axx

Āxx

�
C11

8π2κ2xNðεFÞ
lnð ffiffiffi

e
p

γÞ kBT
εF

; ð10Þ

where e ≈ 2.718 and Āxx, ~Axx are the cumulative aniso-
tropic factors incorporating the effects of different kinds
of anisotropies associated with single-phonon and two-
phonon processes, respectively. One can see from Table I
that these factors are non-negligible and play an appreci-
able role in determining the mobility; this is especially
clear for electrons propagating in the armchair direction,
where Āe

xx ≈ 15.
In Eq. (10), the numerical factor in front of kBT=εF (given

in Table I as α for n ¼ 5 × 1013 cm−2) is less than unity for

FIG. 1. (a),(b) Elastic energy and (c),(d) band-edge shifts
as functions of in-plane and out-of-plane deformations in BP
used to determine elastic constants and deformation potentials.
CBM and VBM are the conduction band minimum and valence
band maximum, respectively. Points correspond to DFT calcu-
lations, whereas lines are the result of fitting with the constants
shown in the insets. In-plane deformations are induced by
direction-dependent strain (u), whereas out-of-plane deforma-
tions are characterized by the wave vector q and amplitude h of a
sinusoidal corrugation along the armchair (x) and zigzag (y)
directions [34].

FIG. 2. (a),(b) Energy dispersion of electrons and holes in BP
along the armchair (x) and zigzag (y) directions with the related
DOS. (c),(d) Fermi contours εF ¼ εðkx; kyÞ shown for the
irreducible wedge of the BZ. Points and thick lines are the result
of GW calculations [34], whereas thin black lines correspond to
the model used in this Letter. Gray area marks the phonon cutoff
wave vector q� at T ¼ 300 K.
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both electrons and holes in BP, meaning that single-phonon
processes always dominate for the degenerate electron gas,
i.e., μ̄ ≪ ~μ. The only situation where two-phonon processes
are expected to be significant corresponds to the case of a
small doping (n ≪ 1013 cm−2). In such a regime, however,
anharmonic coupling between the phonons becomes
significant (k̄=q� < 1) in the charge carrier scattering,whose
quantitative description requires a separate consideration.
It is instructive to make a comparison of single- and two-

phonon scattering in BP with graphene. Given that ḡ ¼ ~g
for isotropic and atomically thin membranes, for equal
carrier densities an estimate of the numerical factor in
Eq. (10) gives α ∼ 27 for graphene [52], which is up to 2
orders of magnitude higher than in BP (see Table I). Since
DOSs are comparable at the given carrier concentration,
the main difference stems from the difference in elastic

properties between the two materials. Indeed, C=κ2 in
graphene is 13 and 58 times larger than the corresponding
ratio calculated for armchair and zigzag directions of BP,
respectively. Physically, this is attributed to the combina-
tion of unusually high in-plane stiffness and superior
flexibility of graphene compared to other 2D materials.
At lower carrier densities, α in graphene becomes even
larger because the energy-dependent DOS ensures that
α ∼ 1=εF, favoring two-phonon scattering.

As can be seen from Figs. 3(c) and 3(d), carrier
mobilities in BP exhibit strongly different anisotropies
μxx=μyy for electrons and holes. At n ¼ 1013 cm−2 and
T ¼ 300 K anisotropy amounts to ∼6.2 for electrons and
∼1.4 for holes. The latter value is in excellent agreement
with the experimental value of 1.66 obtained in Ref. [54]
for hole doping in few-layer BP. Within the approximations
assumed above, the ratio of the total mobility along
different crystallographic directions is

μxx
μyy

≈
my

mx

τ̄−1yy
τ̄−1xx

¼ my

mx

�
ḡy
ḡx

�
2
�
Āyy

Āxx

��
C11

C22

�
: ð11Þ

The resulting anisotropy of the carrier mobility represents,
therefore, a complex interplay between different anisotropic
factors, amongwhich are the anisotropies of effectivemasses,
deformation potentials, and elastic constants. In BP, none
of these factors can be considered as essentially isotropic,
which makes nontrivial a simple qualitative description
of the observable anisotropic properties. Interestingly, at
n < 1013 cm−2 the two-phonon contribution favors the
inverse (μxx=μyy < 1) anisotropy of the hole mobility [34].
Such behavior is expected to be more pronounced at low
carrier concentrations, and is indeed observed in recent
scanning tunneling microscopy experiments [55].
The estimated absolute values of the mobilities along

the armchair (x) direction at n ¼ 1013 cm−2 and T ¼ 300 K
are ∼250 and ∼700 cm2V−1 s−1 for holes and electrons,
respectively. The obtained values are rather low and can be
considered as an upper limit for the mobility in BP at room
temperature. At the higher and lower carrier concentrations
there is some decrease in mobility due to the energy
dependence of the effective masses and the Fermi smearing
effects, respectively. Because single-phonon processes
dominate, they cannot be easily suppressed by, e.g.,
encapsulation or depositing of BP samples on substrates.
For the same reason, at n≳ 1013 cm−2 the mobility is
inversely proportional to the temperature (μ ∼ T−1). Our
estimate for the mobility values is found to be in a good
agreement with available experimental data on field-effect
mobilities in few-layer BP [15–18,55,56], suggesting that
scattering on acoustic phonons is one of the main factors
limiting the intrinsic mobility in BP. We note, however,
that at considerably higher temperatures (T ≫ 300 K) and
higher carrier densities (n ≫ 1013 cm−2), other factors like
optical phonons or electron-electron scattering (not consid-
ered here) might become more important.

×

× ×

×

FIG. 3. (a),(b) Intrinsic carrier mobility (μxx) of BP shown as a
function of the carrier concentration (n) calculated along the
armchair direction for different temperatures (T). (c),(d) Ratio
between the mobilities along the armchair and zigzag directions
(μxx=μyy) shown for different T. Solid lines correspond to the
contribution of both single-phonon and two-phonon scattering
processes, whereas dashed lines correspond to single-phonon
processes only. The lowest depicted density corresponds to the
regime with lnðk̄=q�Þ > 1.

TABLE I. Single- and two-phonon contributions to carrier
mobilities (μ̄ and ~μ) in BP calculated at n ¼ 5 × 1013 cm−2

and T ¼ 300 K along different transport directions (in
cm2 V−1 s−1) and the corresponding anisotropic factors (Ā and
~A) indicating the role of anisotropy in each case. α is the prefactor
of kBT=εF in Eq. (10), determining the μ̄= ~μ ratio.

Holes Electrons

Armchair Zigzag Armchair Zigzag

μ̄ 292 157 738 114
~μ 7 × 103 8 × 103 19 × 103 16 × 103

Ā 0.43 2.65 15.20 0.98
~A 0.43 3.86 0.58 1.18
α 0.89 0.37 0.99 0.17
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To conclude, we have presented a consistent theory for
the charge carrier scattering on acoustic phonons in
anisotropic 2D systems. Both single-phonon and two-
phonon processes are taken into account on equal footing.
The theory is applied to the calculation of intrinsic
mobilities in single-layer black phosphorus, for which
relevant parameters are obtained from first principles.
We have shown that, contrary to graphene, two-phonon
processes governed by flexural phonons can be considered
negligible at carrier concentrations n≳ 1013 cm−2. The
estimated intrinsic mobility in BP at n ∼ 1013 cm−2 and
T ¼ 300 K do not exceed ∼250 and ∼700 cm2V−1 s−1

for holes and electrons. Given that these values can be
considerably reduced by other intrinsic and extrinsic
scattering mechanisms, the application of BP in real
devices might be hindered.
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