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Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena.
While the classical regime has been thoroughly investigated in the past, relatively little is known about the
behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically
address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed
percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the
introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the
nature of the transition such that it becomes first order. In the intermediate regime, where classical and
quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal
features different from the directed percolation class in a low dimension. We finally propose how this
physics could be explored within gases of interacting atoms excited to Rydberg states.
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Introduction.—Nonequilibrium phenomena can be
found in many different contexts, ranging from chemical
reactions to disease spreading. Analogously to the equi-
librium case, nonequilibrium ensembles can show the
emergence of universal behavior, signaling the irrelevance
of the microscopic details of the dynamics for macroscopic
observables. This occurs when such out-of-equilibrium
systems start to act collectively [1–4]. A distinction can
be made, depending on the presence or absence of detailed
balance [5–8], between systems which evolve towards a
stationary equilibrium state [9] (e.g., quenched systems
coupled to thermal baths [10]) or that preserve their
nonequilibrium character even in the long time limit,
representing flux equilibrium states.
Directed percolation (DP) [11] constitutes an instance of

a classical phase transition to an absorbing state, i.e., a state
which can be reached, but not left by the dynamics, and
represents a simple instance of a broader class of intrinsi-
cally nonequilibrium phase transitions [11–14]. Despite its
robustness, its experimental observation has thus far been
elusive [15], with a single exception [16,17]. However, it
was recently suggested to realize and explore DP dynamics
in cold gases of atoms excited to high-lying Rydberg states
[18]. In this work, we harness the opportunities that result
from the fact that Rydberg gases are actually open quantum
systems to go beyond the realm of classical physics (see
also Ref. [19]), and we establish a generalized absorbing
state phase transition in the presence of quantum fluctua-
tions. Driven-dissipative systems indeed constitute an ideal
platform for the investigation of the interplay between
classical and quantum effects, and they have recently been
addressed in a broad range of experiments. The spectrum
includes light-driven semiconductor heterostructures [20],
arrays of driven microcavities [21,22], cold atoms in optical

lattices [23], cavities [24,25], and microtraps [26–28].
Several of these instances employ excitation of the atoms
to high-lying Rydberg orbitals [29–31] in order to achieve
strong interatomic interactions and to study cooperative
effects [32–36].
In these systems, the driving and dissipation not only

introduces coherence loss but also explicitly violates the
equilibrium conditions at the microscopic level [7,37]. It is
thus a challenge to identify to what extent the nonequili-
brium and the quantum nature of the dynamics impact the
macroscopic phase diagram and phase transition properties.
Oftentimes, upon coarse graining, such systems lose their
quantum character and equilibrium conditions are effec-
tively restored [38–43]. But there are instances where
nonequilibrium [44,45] and quantum [46,47] aspects per-
sist even at an asymptotically large wavelength. The
transition we highlight here does not fall into the DP
universality class, and its origin can be unambiguously
traced back to the presence of coherent dynamics. More
precisely, the latter introduces a first-order nonequilibrium
phase transition without counterpart in the purely classical
DP problem. This discontinuous phase transition termi-
nates in a bicritical point which, even asymptotically at
large distances and in dimensions d < 2, does not feature
the symmetries underlying DP, or any equilibrium problem.
Model.—We reproduce a quantum variant of the contact

process (for an introduction, see Ref. [11]). Basically, it
consists of a lattice of “active” and “inactive” sites, where
the former can spontaneously decay to inactive, whereas
activation can only occur in the proximity of already active
sites. Thus, the fully inactive state is absorbing.
Specifically, we consider a lattice of quantum two-level
systems with spacing r. On every site k we define the basis
jaki (active) and jiki (inactive), the density of active sites
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nk ¼ jakihakj and the ladder operators σþk ¼ jakihikj and
σ−k ¼ jikihakj. Under the action of Markovian noise
sources, the state ρ of the system evolves according
to the Lindblad equation [48,49] _ρ ¼ −i½H; ρ� þP

a;kD½La;k�ρ (see the sketch in Fig. 1), where

H ¼ Ω
X

k

Ckσ
x
k; with Ck ¼

X

j NN k

nj ð1Þ

is the quantum Hamiltonian, σxk ¼ σþk þ σ−k , and NN k
denotes nearest neighbors (NN) of site k; D½X�ρ ¼ XρX† −
ðX†Xρþ ρX†XÞ=2 is the dissipator and La;k are the so-
called jump operators, with indices a (process type) and k
(lattice site). These jump operators are chosen to define a
modified contact process [11], which is known to feature
a DP transition, and include decay Ld;k ¼ ffiffiffi

γ
p

σ−k
(jaki → jiki) and—for every neighbor j of k—branching
Lb;j;k ¼

ffiffiffi
κ

p
njσ

þ
k (an active site can activate a neighboring

one jajiki → jajaki) and coagulation Lc;j;k ¼
ffiffiffi
κ

p
njσ−k (the

inverse process jajaki → jajiki). The “constraint” operator
Ck in H represents the simplest choice reproducing the
requirement of an active site nearby to flip a spin; this
makes H the “minimal quantum equivalent” of the noisy
branching or coagulation above. Similar constrained
Hamiltonians have been studied in the past, with a focus
on quantum glassy behavior [19] and many-body locali-
zation [50,51].
Equations of motion and density path integral.—We

infer here the properties of the phase diagram by exploiting
an effective path integral description for the density
variable nk alone. We start by deriving the Heisenberg-
Langevin equations of motion (EOMs) [52] for the
single-site operators nk, σxk, and σyk ¼ −iσþk þ iσ−k . For
convenience, we introduce the coordination number z (the
number of nearest neighbors per lattice site) and the
shorthand Px=y

k ¼ σx=yk

P
j NN kσ

x
j . In the following, we also

measure all times and energies in units of γ; i.e., we set
γ ¼ 1:

_nk ¼ −nk þ ½Ωσyk − κð2nk − 1Þ�Ck þ ξ̂nk; ð2Þ

_σxk ¼ ΩPy
k −

zκ þ 1

2
σxk − κσxkCk þ ξ̂xk; ð3Þ

_σyk ¼ ΩPx
k −

zκ þ 1

2
σyk − ½Ωð4nk − 2Þ þ κσyk�Ck þ ξ̂yk: ð4Þ

The quantum noise terms ξ̂αk consider the fluctuations of the
bath and depend on the structure of the jump operators.
They show vanishing averages but nontrivial, Markovian
correlations, which, for the present setup, are (in rescaled
units) hξ̂xkξ̂xk0 i ¼ hξ̂ykξ̂yk0 i ¼ δk;k0 , hξ̂nk ξ̂nk0 i ¼ δk;k0nk, hξ̂xkξ̂yk0 i ¼
−iδk;k0 , hξ̂nk ξ̂xk0 i ¼ −δk;k0σþk , and hξ̂nk ξ̂yk0 i ¼ iδk;k0σ

þ
k , up to

leading order in the density [53].
In the following, we work in the continuum limit

ðk; tÞ → ð~x; tÞ≡ X and derive an effective path integral

for the density field nX via a Martin-Siggia-Rose con-
struction [3,56–58], which is presented in the Supplemental
Material [53]. Crucially, the σx;y fields are gapped and thus
can be integrated out perturbatively. The resulting long-
wavelength field theory depends on the density variable n
alone, and it is obtained by additionally performing a
derivative expansion of the action. It reads

Sn ¼
Z

X
~nX½ð∂t −D∇2 þ ΔÞnX þ u3n2X þ u4n3X�

−
Z

X

�
1

2
~n2XnX þ μ4 ~n2Xn

2
X

�
≡ Sð1Þn þ Sð2Þn ; ð5Þ

where D ¼ r2κ represents a diffusion constant and
Δ ¼ 1 − zκ − ½ð8z2Ω2Þ=ðzκ þ 1Þ3�, u3 ¼ 2zfκ − ½2zΩ2=
ðzκ þ 1Þ�g, u4 ¼ ½ð8z2Ω2=ðzκ þ 1Þ�, and μ4 ¼ ½2z2Ω2=
ðzκ þ 1Þ2� þ ½128z4Ω4=ðzκ þ 1Þ6� are the microscopic
coupling constants. The response field ~n encodes the linear
response properties of n under small perturbations.
We emphasize two key properties of the action (5): First,

the absence of a density-independent Markovian noise level
∼T ~n2X (necessarily present in classical systems in thermal
equilibrium). This is characteristic of DP dynamics, which
feature the absence of density fluctuations in the absorbing
state nX ¼ 0 and, consequently, a multiplicative kernel
∝ nX. An additive noise introduced by the dissipative terms
Ld ¼ ffiffiffi

γ
p

σ− only occurs in the eliminated spin variables
σx;y. Second, the presence of a nonzero coherent coupling
Ω ≠ 0—i.e., the intrinsic quantum effect—leads to the
appearance of nonzero couplings u4 and μ4 as well as a
negative contribution to u3. This additional quantum scale
Ω breaks a fundamental symmetry of the DP class
(specified below) and strongly modifies the phase diagram
compared to the purely dissipative model (see Fig. 1).
Effective potential and mean-field phase diagram.—The

discussion of the various phases and transitions of
the system is considerably simplified by realizing that
the deterministic contribution to the action Sð1Þn can be
written

R
X ~nXð∂tnX −D∇2nX þ f½δΓðnXÞ�=ðδnXÞgÞ, where

ΓðnÞ ¼ Δ
2
n2 þ u3

3
n3 þ u4

4
n4 ð6Þ

is a local effective potential. In the absence of fluctuations,
Γ characterizes the mean-field phases, which are deter-
mined by the properties around its minima.
The corresponding phase diagram is shown in Fig. 1(b).

The active phase is identified by Δ < 0, u4 ≥ 0, and
u3 > 0, which leads to a single minimum of the effective
potential at finite density. On the other hand, when both Δ
and u4 are positive, there is a local minimum of Γ at n ¼ 0.
For negative and sufficiently strong cubic coupling
u3 < −2

ffiffiffiffiffiffiffiffi
u4Δ

p
, there exists a second local minimum at

finite density n > 0. In this regime, the mean-field
evolution features two attractive fixed points and the
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thermodynamic phase is determined within the optimal
path approximation in phase space [59].
Three different types of phase transitions from the active

to the inactive state can be thus identified, their nature
depending on the specific choice of parameters and the
dimensionality. When the gap Δ vanishes with u3 and u4
both greater than zero, the system undergoes a second-
order phase transition [see Fig. 2(a)], corresponding to a
diverging correlation length ξ ¼ 1=

ffiffiffiffiffiffiffijΔjp
→ ∞. Numerical

evidence for this transition is presented in Fig. 2(b), which
displays the stationary density of active sites obtained
for Ω ¼ 0 in a chain of 200 sites. For Δ > 0 and
u3 ≤ −2

ffiffiffiffiffiffiffiffi
u4Δ

p
, the transition from the active to the inactive

phase takes place instead at the finite correlation length
ξ ¼ 1=

ffiffiffiffiffiffiffijΔjp
< ∞. The form of the effective potential

ΓðnÞ suggests a first-order transition line in this regime
featuring the coexistence of the zero and finite-
density solutions. This case, however, requires additional
care due to the specific form of the noise, as detailed
below.

The α point in Fig. 1(b) located atΔ ¼ u3 ¼ 0 represents
a bicritical point at which both the line (Δ > 0,
u3 ¼ −2

ffiffiffiffiffiffiffiffi
Δu4

p
) and the line of continuous transitions

(Δ ¼ 0, u3 > 0) terminate. At this point, the quartic
potential term u4 provides the leading nonlinearity.
Fluctuations at the continuous transition.—The compe-

tition between quantum and classical dynamics strongly
affects the nature of the active-to-inactive transition. In the
absence of the coherent coupling, u4, μ4 ¼ 0, the action (5)
is equivalent to the so-called Reggeon field theory for
classical DP [60]. It features—upon rescaling the fields—
the characteristic rapidity inversion symmetry, which
leaves the system invariant under the transformation
n↔ − ~n and t → −t [3,7,59]. For u4 > 0, this symmetry
is broken by the microscopic action. The implications
depend on the dimension d: For d > 2, u4 is
Renormalization Group (RG) irrelevant and can be dis-
carded in the infrared-dominated dynamics close to the
continuous transition. Consequently, in d > 2, rapidity
inversion is restored and the line of continuous transitions
displays universal scaling behavior corresponding to
classical DP.

FIG. 1. (a) Fundamental processes. We consider a lattice whose
sites admit two states: active (yellow) and inactive (red). Active
sites decay to inactive at a rate of γ. Proliferation of active sites is
possible through classical (rate κ) and quantum (strength Ω)
branching. (b) One-dimensional (z ¼ 2) phase diagram con-
structed from the effective action (5) in a saddle-point approxi-
mation (the color code corresponds to the density of the active
sites). All parameters are measured in units of γ. In the classical
limit (Ω ¼ 0), the system exhibits a continuous (second-order)
directed percolation phase transition between an absorbing state
and a finite-density one. This transition extends into the quantum
regime (the thick red line) up to the critical point α. In the
quantum limit (κ ¼ 0) a first-order transition is found which also
extends into the classical regime (the dashed yellow line) up to
point α. In the neighborhood of this line, a narrow region of
coexistence of two attractive stationary solutions is present,
which is not resolved here. The high values of the density
reached in the active phase stem from neglecting higher orders of
n in the action, which would otherwise enforce n ≤ 1=2.

FIG. 2. Effective potential and phase transitions. (a) Behavior
of the effective potential ΓðnÞ (arbitrary units) across the second-
order phase transition. Dots mark the minima of ΓðnÞ. The
transition occurs when Δ in Eq. (6) changes sign. (b) Stationary
state density in the classical limit (Ω ¼ 0) as a function of κ (a
chain of 200 sites, averaged over 103 realizations per point),
obtained via Monte Carlo simulations starting from a completely
active configuration and stopped at time γt ¼ 104. The data show
the characteristic behavior of a continuous phase transition
around κc ≈ 6.2. (c) Effective potential ΓðnÞ (the dashed lines)
and the corresponding “optimal-path” potential WðnÞ (the solid
lines)—see Eq. (7)—across the first-order transition. At the
transition point,Wðn1 ¼ 0Þ ¼ Wðn2Þ ¼ 0. (d) Steady-state histo-
gram of the density in the quantum limit κ ¼ 0 (12 spins)
obtained via a quantum-jump Monte Carlo (QJMC) method,
indicating a first-order transition (Ωc ≈ 2) as Ω increases. Two
stable stationary solutions, one with zero and one with finite
density, emerge. The inset displays a section of the histogram
taken at Ω ¼ 8.
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At the α point [the white dot in Fig. 1(b)], u3 ¼ 0 and the
leading-order coupling becomes u4. For d > 2 [61], the
continuous transition at this point is governed by mean-
field scaling behavior since u4 is RG irrelevant and cannot
introduce infrared divergent corrections to the vanishing
couplings u3, Δ. On the other hand, for d < 2, u4 becomes
RG relevant and generates a nontrivial RG flow ofΔ and u3
on the entire second-order transition line. This leads to a
violation of rapidity inversion which persists at long
wavelength and thus drives the system away from the
DP critical point to a different nonequilibrium universality
class, without specific symmetries. In d < 2, therefore,
only the isolated point κ ¼ 1=z, Ω ¼ 0 lies in the DP class,
while the presence of quantum fluctuations imprints a new
universal scaling behavior on the entire line, including the α
point. In d ¼ 2, the scaling of the fluctuation corrections to
u4 determines whether this coupling becomes relevant,
making the scenario equivalent to d < 2, or irrelevant,
which has to be determined by a RG analysis.
Nonequilibrium discontinuous transition.—For (Δ > 0,

u3 < −2
ffiffiffiffiffiffiffiffi
Δu4

p
), the effective potential Γ displays two

distinct minima, n1 ¼ 0 and n2 ¼ ðju3j=2u4Þ þ
½ðu23=4u24Þ − ðΔ=vÞ�1=2, suggesting a first-order phase tran-
sition. The actual transition line lies where the finite-
density minimum becomes statistically preferred. In
equilibrium, this would be the point at which the minima
of Γ are at the same height. However, the present non-
equilibrium noise shows more pronounced fluctuations at
larger densities and thus favors n1 over n2. To estimate the
steady-state distribution functionPðnÞ, we apply the optimal-
path approximation to the action [3,59]; this involves treating
the coefficient ΞðnÞ ¼ 1

2
nþ μ4n2 of ~n2 as a kind of mean-

field, density-dependent temperature. It yields [53]

PðnÞ ¼ 1

Z
e−VWðnÞ; with WðnÞ ¼

Z
n

0

dm
∂Γ=∂m
ΞðmÞ ;

ð7Þ

with volumeV andnormalizationZ. The potentialsWðnÞ and
ΓðnÞ both vanish in n1 and share the finite-density minimum
n2. In the thermodynamic limit V → ∞, PðnÞ → δðn − nlÞ,
where l ¼ 1, 2, depending on which one is the global
minimum of W, accounting for the physical constraint
n ≥ 0. The transition occurs when Wðn2Þ ¼ 0, which iden-
tifies the nonequilibrium first-order line [the dashed line in
Fig. 1(b)]. Because of the nonequilibrium nature of the
fluctuations, this does not coincide with the naive prediction
Γðn2Þ ¼ 0, as shown in Fig. 2(c). In Fig. 2(d) we report the
full-counting statistics of the density n obtained via QJMC
techniques [62] for a chain of12spins.Despite thepresenceof
strong finite-size effects, a bimodal structure is still high-
lighted for large values of Ω. This implies that trajectories
bunch together around two possible values, the absorbing one
and a finite-density one; this constitutes a signature of the
aforementioned coexistence.

Realization with Rydberg atoms.—Atoms excited to
Rydberg states are employed in current experiments to
study many-body effects [26,32,34,63–71]. Recently, sev-
eral theoretical studies addressed the semiclassical limit of
these systems [72,73], connecting their dynamics to that of
constrained classical ones [73,74]. Reasoning along the
same lines of Ref. [18], we discuss below an implementa-
tion which should permit the exploration of the physics
discussed above.
The internal structure of Rydberg atoms can be approxi-

mated as a ground state jGSi≡ jii (inactive site) and an
excited one jRydi≡ jai (active site). Rydberg gases feature
strong van der Waals interactions in state ja > [29–31],
which rapidly decay as r−6 with the interparticle distance r.
For the sake of simplicity, we approximate them here
as nearest-neighbor terms VNN in a one-dimensional
configuration.
Quantum branching and coagulation is realized via

coherent driving by a laser field of Rabi frequency Ω
and detuning ΔL with respect to the atomic transition
frequency; fixing ΔL ¼ −VNN enables an “antiblockade”
[72,75,76] mechanism which favors the excitation of a
Rydberg atom next to an already excited one, e.g.
jiai > → jiaa >. Unlike the idealized model above, the
constraint requires here a single excitation nearby, and
processes such as jaia > → jaaa > are highly suppressed.
The Hamiltonian is therefore approximately given by
HRyd ¼ Ω

P
kC

0
kσ

x
k, where C

0
k ¼ nk−1 þ nkþ1 − 2nk−1nkþ1.

To generate the incoherent branching and coagulation
the atoms are coupled (with coupling g) to a second equally
detuned light field with strong phase noise (dephasing rate
λ ≫ g) [77]; for a correlation length shorter than the
interatomic distance, the bath is modeled as independent
bosonic modes bk, b†k acting on each lattice site. The
effective equation of motion for the atoms is obtained by
performing second-order perturbation theory in the small
parameter g=λ [18,78,79]. The resulting master equation for
the reduced atomic density matrix ρ is

_ρ ¼ 4g2

λ

X

k

ðhb†kbkiD½C0
kσ

þ
k � þ hb†kbk þ 1iD½C0

kσ
−
k �Þρ:

At sufficiently high (hb†kbki ≫ 1) and homogeneous
(hb†kbki ≈ hb†mbmi) intensity, one can identify κ ¼
ð4g2hb†kbkiÞ=λ, leading to the branching and coagulation

jump operators LRyd
b;k ¼ ffiffiffi

κ
p

C0
kσ

þ
k and LRyd

c;k ¼ ffiffiffi
κ

p
C0
kσ

−
k . The

final process is radiative decay from the Rydberg state to
the ground state, with jump operator LRyd

d;k ¼ ffiffiffi
γ

p
σ−k [31].

Although the microscopic formulation of the dynamics is
slightly different from the previously discussed model—for
example, atoms with more than one excited neighbor are
brought off resonance—the resulting phase structure is
similar, as the EOMs only differ from Eqs. (2)–(4) by
RG-irrelevant higher-order density terms.
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Outlook.—We have investigated the effects of quantum
dynamical processes on a prototypical absorbing-state
phase transition. We highlighted the emergence of a richer
structure in the phase diagram, which includes both a
discontinuous and a continuous nonequilibrium transition.
In the low dimension d < 2, the presence of a quantum
coherent process leads to a breaking of the only funda-
mental symmetry of DP in a way that persists at long
wavelengths, and thus leads to a phase transition of a
different nature. In equilibrium, the interplay between
classical (thermal) and quantum fluctuations typically leads
to a dimensional crossover [2,80]. This Letter shows that,
out of equilibrium, the picture is not as straightforward and
opens the path for further investigations in this field,
including the quantitative characterization of the new
universality class.
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