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Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ)
tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we
consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical
waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet
gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts—a fast
scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time
when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed
spectrum, made possible due to LZ tunneling.
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Lattice waves probe the symmetries and topologies
imprinted by an underlying periodic potential. Quite often
it is possible to restrict the dynamics to a few bands, for
instance for electrons in crystals or in artificial quantum dot
arrays [1], ultracold atoms in optical lattices [2], microwaves
in dielectric resonator networks [3], and light propagation in
waveguide networks [4]. Additional interactions between the
constituent waves lead to interesting new phenomena (see
references in recent reviews on topological flat bands [5,6]).
Flat band (FB) networks are specific tight-binding

translationally invariant lattices with local symmetries
which ensure the existence of one (or a few) completely
dispersionless bands in the spectrum. FBs have been
studied in a number of lattice models in three-dimensional,
two-dimensional, and even one-dimensional (1D) settings
[7–9], and recently realized experimentally with photonic
waveguide networks [10–12], exciton-polariton conden-
sates [13,14], and ultracold atomic condensates [15,16].
FB networks rely on the existence of compact localized

eigenstates (CLS) due to destructive interference, enabled
by the local symmetries of the network. FB networks
are constructed using graph theory [7,17–20] and CLS
[7,21,22] and can be perturbed e.g., by disorder to arrive
at unexpected new scaling laws [22,23], and correlated
potentials to arrive at diverging densitites of states, gaps,
and designable mobility edges [24,25]. A perhaps most
prominent example is the fractional quantum Hall effect,
which occurs as a result of the flat band degeneracy of
Landau levels of electrons in a magnetic field and electron-
electron interactions [26]. Compact localized eigenstates
have been recently successfully obtained in experiments
with photonic waveguide networks [11,12] and exciton-
polariton condensate networks [14]. Therefore CLS are
addressable states in a flat band system.

A very intriguing question which might be important for
applications is whether and how compact localized states
will perform Bloch oscillations in the presence of external
fields. To address this question we choose the diamond
chain FB network in Fig. 1 with a flat band which intersects
dispersive bands [22]. This model has an easily realizable
geometry, as can be observed from published experimental
realizations of one- and two-dimensional Lieb lattices
[10–14], which are topologically very close to the diamond
chain considered here.
We perturb the FB of the diamond chain network and

hybridize it with dispersive modes under the action of dc
electric and magnetic fields in a two-dimensional setting
(the case of magnetic fields only was considered in [27]).
Our results are applicable for ultracold atoms in optical
lattices where the electric field is substituted by a tilt of the
lattice in the gravitational field [28] or accelerating the
whole lattice [29], while the magnetic field is generated by
artificial gauge fields [30]. Notably the same type of
perturbations can be arranged in optical waveguide arrays

FIG. 1. Schematics for the three leg diamond lattice with a
(red), b (blue), and c (green) legs. Dashed lines indicate sites
connected with hopping (tunneling) of the quantum particle
(wave). Solid arrows indicate the phase of complex hopping
constants in a single plaquette, with the specific gauge used for
the perpendicular (to the lattice plane) dc magnetic field B. E∥
and E⊥ define the longitudinal and transversal components of the
dc electric field, respectively.
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where the electric field is modeled by a curved geometry of
the waveguides [31], while a special metallic fabrication of
the waveguides and the surrounding medium [32] mimics a
magnetic flux.
The applied dc field only partly removes the flatness of

the FB leading to a gapped band structure. A properly
added magnetic flux closes these gaps and enforces
Landau-Zener tunneling [33] which scans the whole band
structure in Bloch oscillation manner [34], and comes to an
almost complete halt once the wave is exploring the
reminders of the unperturbed flat band.
The tight-binding Hamiltonian of the diamond chain

(Fig. 1) reads as follows:

Ĥ ¼ Ĥh þ Ĥ⊥ þ Ĥ∥;

Ĥh ¼ −
X

ðb̂þn ân þ ĉþn b̂nÞeiϕ − b̂þn−1ĉn − âþn b̂n−1 þ c:c:;

Ĥ⊥ ¼
X

E⊥ðâþn ân − cþn ĉnÞ;

Ĥ∥ ¼
X

E∥nðâþn ân þ b̂þn b̂n þ ĉþn ĉnÞ þ
E∥

2
b̂þn b̂n; ð1Þ

where âþj , b̂
þ
j , ĉ

þ
j and âj, b̂j, ĉj are standard creation and

annihilation operators of an atom at the jth lattice site of the
legs a, b, c, but could also simply be complex amplitudes of
a photonic light field in a waveguide structure. E∥ and E⊥
are longitudinal and transversal in-plane components of a
dc electric (gravitational) field which detunes the on-site
energies of the network. The phase ϕ complexifies the
tunneling amplitudes as a particular gauge choice for the
dc magnetic (artificial gauge) field B which is oriented
perpendicular to the diamond chain embedding plane. It
follows that the magnetic flux penetrating each diamond
plaquette has the value 2ϕ.
The discrete Schrödinger equation which follows from

(1) is given by

i _an ¼ ðE∥nþ E⊥Þan − e−iϕbn − bn−1;

i _bn ¼ E∥

�
nþ 1

2

�
bn − eiϕan − e−iϕcn − cnþ1 − anþ1;

i_cn ¼ ðE∥n − E⊥Þcn − eiϕbn − bn−1: ð2Þ

In the absence of a longitudinal field E∥ ¼ 0 we seek
for plane wave solutions an ¼ aðtÞeikn, bn ¼ bðtÞeikn,
cn ¼ cðtÞeikn:

i _a ¼ E⊥a − ðe−iϕ þ e−ikÞb;
i _b ¼ −ðeiϕ þ eikÞa − ðe−iϕ þ eikÞc;
i_c ¼ −E⊥c − ðeiϕ þ e−ikÞb; ð3Þ

and arrive at the following cubic equation for the eigen-
value λ using aðtÞ; bðtÞ; cðtÞ ∼ eiλt:

− λ3 þ Cλ −D ¼ 0;

C ¼ E2⊥ þ 4ð1þ cosϕ cos kÞ;
D ¼ 4E⊥ sinϕ sin k: ð4Þ

For special cases it follows that one central (at λ ¼ 0)
or all three bands are flat [27] and shown in Figs. 3(a)
and 3(c):

ϕ ¼ 0 ∶ λ1 ¼ 0; λ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2⊥ þ 4ð1þ cos kÞ

q
;

E⊥ ¼ 0; ϕ ¼ π=2 ∶ λ1 ¼ 0; λ� ¼ �2;

E⊥ ¼ 0 ∶ λ1 ¼ 0; λ� ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosϕ cos k

p
:

ð5Þ
Apart from those cases, all bands are nonflat, with a
typical dispersion shown in Fig. 3(d). The central flatband
becomes dispersive, and we observe two gaps (avoided
crossings) symmetrically located around k ¼ π and λ ¼ 0.
In the absence of both fields [Fig. 3(a)], or in the presence
of only one of the two fields [Figs. 3(b) and 3(c)], the band
structure appears to be invariant under either the particle-
hole symmetry operation λ → −λ or the time (or space)
reversal operation k → −k, even in the presence of a
magnetic field. This is because the eigenvectors, and the
equations (3) are invariant under the following symmetries:
ϕ ¼ 0: t → −t, k → −k, complex conjugation; ϕ ≠ 0:
t → −t, k → −k, aðbÞ → bðaÞ, complex conjugation.
Since E⊥ detunes the a and b sites, this leads to a lower
spectral symmetry of the general case in Fig. 3(d) where
the spectrum is invariant under the combined action of
both λ → −λ and k → −k operations.
The Bloch eigenstates of a flat band can be superposed

in order to obtain compact localized eigenstates [22].
Different flatband networks are characterized by different
local symmetries and topologies of CLS. In one-
dimensional settings the CLS can be classified by the
integer numberU of unit cells they occupy [22]. For U ¼ 1
CLS form an orthogonal linearly independent set, while for
U > 1 their set is linearly independent but nonorthogonal.
For a given network the value of U can change upon
lowering local symmetries, e.g., due to external fields. For
E⊥ ¼ ϕ ¼ 0 the diamond chain belongs to theU ¼ 1 class,
and its irreducible compact localized state is shown in
Fig. 2(a). Only two sites within one unit cell are occupied.
Destructive interference prevents a leaking of the wave
functions into the exterior. For all other flat band cases
considered in (5) the CLS class increases to U ¼ 2. For
ϕ ¼ 0 the CLS at λ ¼ 0 is shown in Fig. 2(b). Note that this
CLS will tend to a single site U ¼ 1 CLS in the limit of
infinite E⊥. For E⊥ ¼ 0 and nonzero flux ϕ the CLS vector
becomes complex as shown in Fig. 2(c) at λ ¼ 0. For the
special case ϕ ¼ π=2 all three bands turn flat [27] and
the new flat band energies λ ¼ �2 correspond to the CLS
vectors shown in Fig. 2(d).
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By fine-tuning the parameters E⊥ and ϕ we can close the
gaps in the band structure completely. Indeed, the cubic
equation (4) has two degenerate roots when the Cardano
equality 4C3 ¼ 27D2 is satisfied, which translates into

E2⊥þ4ð1þcosϕcoskÞ¼ð6=21=3ÞðE⊥ sinϕsinkÞ2=3: ð6Þ

Let us take ϕ as the free variable. It is straightforward to
show that there is a solution to (6) which is given by

E⊥ ¼
ffiffiffi
2

p
sinϕ; k ¼ π � ϕ: ð7Þ

The band structure with vanishing gaps for the particular
value of ϕ ¼ 0.2 is shown in Fig. 5(a). The perturbed flat
band part still displays a significant portion which is almost
dispersionless.
Next we consider the case E∥ ≠ 0. We note that the CLS

for E⊥ ¼ ϕ ¼ 0 in Fig. 2(a) is still an exact solution of the
wave equations in the presence of nonzero E∥, and any
linear combination of multiple CLS as well [35]. We will
therefore first consider a Gaussian wave packet of such
linear CLS combinations an ¼ −cn ¼ e−n

2=2σ2 as an initial
state with variance σ ¼ 70, and trace its evolution for
E∥ ¼ 0.05. Figure 3 shows the band structure for four
different parameter cases, and Fig. 4 the evolution of the
norm density per unit cell ρn ¼ janj2 þ jbnj2 þ jcnj2. In all
considered cases we observe Bloch oscillations. However,
the details of these oscillations are strongly depending on
the different cases considered.
The above mentioned case E⊥ ¼ ϕ ¼ 0 with a flat band

at λ ¼ 0 [Fig. 3(a)] keeps the compactness of the initial
state; therefore, no oscillations occur [Fig. 4(a)]. For
E⊥ ¼ 0 and ϕ ≠ 0 and similarly for E⊥ ≠ 0 and ϕ ¼ 0
the initial state starts to evolve in a symmetric way
[Figs. 4(b) and 4(c)] reflecting the band structure symmetry
in Figs. 3(b) and 3(c), and the fact that the initial state
ceases to be a linear combination of CLS which changed
their class from U ¼ 1 to U ¼ 2 (see Fig. 2). We observe
sharp changes from an almost frozen state into an oscillat-
ing pattern due to Landau-Zener transitions at the gaps of

(a) (b)

(c) (d)

FIG. 2. CLS structure. Filled circles designate occupied sites
with amplitudes denoted right to them, which have to be divided
by a factor n to ensure normalization of the eigenvector. Empty
circles correspond to zero amplitudes. Lines indicate the hopping
connections. (a) E⊥ ¼ ϕ ¼ 0, λ ¼ 0, n ¼ ffiffiffi

2
p

; (b) ϕ ¼ 0, λ ¼ 0,
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ E2⊥

p
; (c) E⊥ ¼ 0, λ ¼ 0, n ¼ 2; (d) E⊥ ¼ 0, ϕ ¼ π=2,

λ ¼ �2, n ¼ ffiffiffi
8

p
. The color definitions are as in Fig. 1.
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FIG. 3. Band energies versus wave number. Graph (a) displays
the case when transversal fields are absent, in (b) and (c) one of
the fields is present, while in graph (d) both dc electric and
magnetic fields are nonzero. The parameter values are indicated
in the graphs.

FIG. 4. Results of numerical simulations exciting initially a
Gaussian CLS from in Fig. 2(a) (see text for details), with
respective field values as taken in graphs of Fig. 3. In all
simulations Graph (a) displays the case when transversal fields
are absent, in (b) and (c) one of the fields is present, while in
graph (d) both dc electric and magnetic fields are nonzero.
E∥ ¼ 0.05. The space-time evolution of the norm density ρn ¼
janj2 þ jbnj2 þ jcnj2 is plotted in color code.
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the band structure. These sudden switches from a non-
moving to a rapidly oscillating packet are further intensified
and become asymmetric when both fields E⊥ and ϕ turn
nonzero, as seen in Fig. 4(d), respectively. Still the nonzero
gap values induce a splitting of the wave packet—a part of
the packet continues adiabatically, while a complementary
part continues antiadiabatically due to Landau-Zener
transitions.
Let us quantify these observations. Since we choose

longitudinal field values E∥ ¼ 0.05 which are small com-
pared to the band structure width 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2⊥ þ 8

p
we can

describe the Bloch oscillations by replacing k in the band
structure for E∥ ¼ 0with the slow variable E∥twhich scans
the band structure. The starting point corresponds to the
(almost) flat band in Figs. 3(b)–(d). The avoided crossings
are reached at k ¼ π which translated into t ¼ π=E∥ ¼ 63
in excellent agreement with Figs. 4(b)–(d). The gap values
are Δ ¼ 0.18, 0.32, 0.16 for the cases (b),(c),(d) in Fig. 3,
respectively. The relevant Landau-Zener parameter αwhich
describes the scanning speed through the avoided crossing
is given by α ¼ E∥

ffiffiffi
2

p
cos2ðϕ=2Þ [35]. The probability

P ¼ e−πΔ
2=2α of a diabatic Landau-Zener transition [33] is

then obtained as P ¼ 0.48, 0.1, 0.56 for the cases (b),(c),(d)
in Fig. 4. Indeed, the numerically observed diabatic
transitions are much stronger in cases (b),(d) than the
weaker one in case (c) in Fig. 4. This is a good approxi-
mation to the first observed passage of energy level
crossings. Starting from the second passage one has to
take into account the appearance of Stückelberg phases [36]
which are responsible for constructive and destructive
interference of wave functions. The analytical expressions
for those phases as well as the respective tunneling
probabilities for triple LZ tunneling are not available in
closed form, but it is possible to evaluate these probabilities
using Eq. (5) of the Supplemental Material [35].
We proceed to the case of vanishing gaps as discussed

above. The most striking impact of both transversal dc
electric and magnetic fields is that for E⊥ ¼ ffiffiffi

2
p

sinϕ,
when the band structure turns gapless [Fig. 5(a)], Bloch
oscillations harvest completely from Landau-Zener tunnel-
ing whose probability turns into unity. This case is
displayed in Fig. 5(b) for an initial state given by a
Gaussian envelope of the k ¼ 0 lowest eigenenergy state
from Fig. 5(a) with variance σ ¼ 70 (such states can be,
e.g., easily addressed with ultracold atomic condensates).
For a significant part of its evolution it stands still, only to
cross over into a large amplitude oscillation which clearly
corresponds to the scanning of the corresponding band
structure with complete Landau-Zener tunneling. These
features are observed even in the case of an initial condition
in the form a single CLS from Fig. 2(a) and shown in
the lower plot in Fig. 5. In this case, the CLS remains
essentially frozen until it performs a violent sweep through
the system over about 30 sites, where it recombines only to
perform the sweep again.

The combination of the physics of Bloch oscillations,
Landau-Zener tunneling, and of flat band networks opens
promising directions for control of unconventional quan-
tum and photonic transport through properly designed
lattice structures. Extensions of this study to two dimen-
sions and to the inclusion of two-body interactions are
intriguing pathways for further work.
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