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Self-organized criticality elucidates the conditions under which physical and biological systems tune
themselves to the edge of a second-order phase transition, with scale invariance. Motivated by the empirical
observation of bimodal distributions of activity in neuroscience and other fields, we propose and analyze a
theory for the self-organization to the point of phase coexistence in systems exhibiting a first-order phase
transition. It explains the emergence of regular avalanches with attributes of scale invariance that coexist
with huge anomalous ones, with realizations in many fields.
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Multistability—understood as the existence of diverse
stationary states under a fixed set of conditions—is
ubiquitous in physics and in biology [1–3]. Bistable
switches are a common theme in the regulation of cellular
processes such as cycles, differentiation, and apoptosis [4]
and, often, genes are expressed in huge episodic bursts
interspersed with periods of quiescence [5]. The cerebral
cortex exhibits bistability during deep sleep, with an
alternation between high and low levels of neural activity
[6–8]. Real neural networks, both in vitro and in vivo
have been reported to exhibit power-law distributed ava-
lanches of activity—interpreted to be a sign of underlying
criticality—[9]; however, when inhibitory mechanisms are
repressed or under epileptic conditions [10], very large
events (beyond the expectations of criticality) appear, and
size distributions become bimodal, suggesting some kind
of underlying bistability.
Here, we are interested in spatially extended noisy

systems—such as the whole cortex or gene-expression
patterns across tissues—for which a statistical mechanics
framework is most appropriate. In this context, bistability is
tantamount to the existence of a first-order phase transition
at which two phases coexist [2]. A cornerstone result of
equilibrium thermodynamics, the Gibbs phase rule, estab-
lishes that two phases can coexist only at a single transition
point of a one-dimensional parameter space [2] (see,
however, [11]). Thus, if biological systems operate in
regimes of bistability, there should exist mechanisms by
which they self-tune to the edge of a first-order phase
transition. This idea resembles the rationale behind self-
organized criticality (SOC) [12–16], which explains why
critical-like phenomena are ubiquitous despite the fact that
second-order phase transitions, with their associated criti-
cality, power laws, and scaling, occur only at singular
points of phase spaces. SOC toy models, such as sandpiles

[12,17,18]), illustrate how self-tuning to criticality may
occur (see below). Theoretical progress [16,19–21] allowed
for a rationalization of how SOC works, by relating it to a
standard second-order phase transition [2,22].
The purpose of the present Letter is to formulate

a general theory of self-organized bistability (SOB) or
self-organized phase coexistence by extending ideas of
self-organization to bistable systems. To this end, we
recapitulate existing models and the theory of SOC and
modify them to describe systems exhibiting a first-order
phase transition.
Standard vs “facilitated” sandpiles.—We start by focus-

ing on an archetypical SOC model: the stochastic Manna
sandpile [17]. We analyze both its standard version and a
modified one. Sand grains (i.e., discrete tokens of stress or
“energy”) are progressively injected at random sites of a
spatially extended system one at each time step (slow time
scale). Whenever a certain local threshold (e.g., z ¼ 3) is
exceeded, the corresponding site becomes unstable and all
its sand grains are redistributed randomly (as opposed to
deterministically in the original sandpile [23]) among its
nearest neighbors, possibly generating a cascade of activity
or “avalanche.” The dynamics is conserving, except at the
boundaries where sand grains are “dissipated” [24]. When
avalanches stop the addition of grains is resumed, imple-
menting a perfect separation of time scales. Iteration of this
slow-driving or dissipation mechanism leads to a steady
state in which avalanche sizes and durations are distributed
as PðsÞ ∼ s−τ and PðtÞ ∼ t−τt up to a system-size dependent
cutoff [13,14,16,25–27].
Early experimental attempts aimed at observing scale-

invariant (SOC) avalanches in real sandpiles did not find
the expected power-law distributions. Instead, they found
anomalously large quasiperiodic avalanches that exceeded
the expectations for large events in SOC (see, e.g., Fig. 4
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in [28]). The reason for this is that real sand grains have a
tendency to keep on moving once they start doing so,
dragging other grains, and facilitating the emergence of
huge avalanches. To mimic this effect in a highly stylized
way, we consider the Manna sandpile and modify it with a
facilitation mechanism. In particular, we let sites that
receive grains simultaneously from more than one neighbor
(e.g., from two) temporarily (one time step) decrease their
instability threshold (e.g., to z ¼ 1). This type of co-
operative activation is expected to generate discontinuous
transitions [22]. Steady-state avalanche-size distributions
PðsÞ for this facilitated sandpile are plotted in Fig. 1 for
different linear system sizes, L. Two facts are in blatant
contrast with usual sandpile results (also portrayed in
Fig. 1): (i) the distributions are bimodal and consist of
two different types of avalanches, “regular ones” and huge
avalanches or “kings” [29]—corresponding to the bumps in
the distributions—that reverberate through the whole sys-
tem; and (ii) regular avalanches are (nearly) power-law
distributed, but with an exponent τ ≈ 1.5 significantly
different from the value τ ¼ 1.26ð5Þ of standard sandpiles
[30,31]. The relative abundance of regular and king
avalanches can be altered by changing model details. In
any case, the resulting bimodal distributions stem from the
self-organization to a state of bistability, as we show by
putting these findings onto a much more general frame-
work: the theory of SOB.
SOC vs SOB: mean-field picture.—The key idea to

elucidate how SOC works consists in “regularizing”
sandpiles by switching off slow driving and boundary
dissipation. In this way, the total amount of sand (which we
call energy, E) becomes a conserved quantity that can be
used as a control parameter [16,19,20]. In the “fixed-energy
ensemble” the system can be either in an active phase (with
perpetual activity) for large values of E, or in an absorbing

phase (where dynamics ceases) for sufficiently small values
of E [22]. Separating these two phases, there is a critical
point, Ec, at which a standard second-order phase transition
occurs. In this setting, SOC is understood as a dynamical
mechanism that, by exploiting slow driving and energy
dissipation at infinitely separated time scales, self-tunes the
system to Ec [12,14,15,27]). To illustrate these ideas, let
us recall how they operate in the simplest possible mean-
field framework [32]. For this, we consider the minimal
form _ρðtÞ ¼ aρ − bρ2 for a (mean-field) continuous phase
transition separating an absorbing phase with vanishing
activity ρ ¼ 0 (for a < 0) from an active one, ρ ¼ a=b ≠ 0
(for a > 0); b > 0 is a constant (see Fig. 2). This equation
is now coupled to an additional conserved energy variable
E fostering the creation of further activity, _ρðtÞ ¼
ðaþ ωEÞρ − bρ2, where ω > 0 is a constant. For sand-
piles, E represents the total density of sand grains while ρ is
the density of sites above threshold. In the fixed-energy
variant, E is a conserved quantity, and the critical point
lies at Ec ¼ −a=ω. Instead, in the SOC version E is a
dynamical variable, as an arbitrarily small driving rate h
and activity-dependent energy dissipation ϵ are switched
on: _E ¼ h − ϵρ. In the double limit, h, ϵ → 0 with h=ϵ → 0
the steady-state solution is E ¼ Ec; i.e., the system self-
organizes to criticality.
To construct a mean-field theory of SOB, one needs to

replace the model showing a continuous transition by its
counterpart for a discontinuous one: _ρðtÞ¼aρ−bρ2−cρ3,
with b < 0 and c > 0 [the rhs derives from the potential
VðρÞ shown in Fig. 2, and can be obtained from the
continuous-transition case by assuming an additional
facilitation effect]. Indeed, to implement a positive feed-
back (facilitation) one needs to increase the a, in the
presence of activity, as a → aþ αρ, where α is some
constant shifting −b toward larger values b → −bþ α.
Also, an additional cubic term is included to avoid ρ → ∞.

FIG. 1. Avalanche size distributions for the (left) standard two-
dimensional Manna sandpile model and the (right) facilitated
sandpile model (time distributions for the two cases are shown in
the upper insets). Observe the difference in the avalanche
exponents, corresponding to the so-called Manna class in the
standard (SOC) case (τ ≈ 1.26, τt ≈ 1.48) versus (τ ≈ 3=2, τt ≈ 2)
for the facilitated sandpile. In the facilitated case there are bumps
of anomalously large avalanches or kings [29]. The lower insets
illustrate that energy time series are much more sawtoothlike
in the facilitated than in the SOC case owing to the existence
of kings.

FIG. 2. Sketch of how—within mean-field theory—the self-
organization mechanism (alternating driving and dissipation at
infinitely separated time scales) tunes to (a) the critical point of a
second-order phase transition (SOC) or (b) to the hysteretic loop
of a first-order one. The inset in (b) sketches the shape of the
potential V and the position of the minima (color coded as in
the dots of the main plot) as E is changed. (c) Potential VðρÞ for
different values of b, both positive (one minimum) and negative
(two minima). For b < 0, the potential depth at the active minima,
Δ, grows with jbj. Parameters are a ¼ −1.3, ω ¼ c ¼ 1.
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For the above equation, there is a regime of bistability for
the active and absorbing states, the domains of attraction of
which are separated by the spinodal line [dashed line in
Fig. 2(b)]. Coupling, as in SOC, this dynamics to that of an
energy field, _E ¼ h − ϵρ, the system follows a limit cycle
(the hysteretic loop in Fig. 2): a departure from the
absorbing or active state is observed only when local
stability is lost (ending points of the spinodal line).
Therefore, within the mean-field approximation, a self-
organizing mechanism identical to that of SOC leads to
cyclic bursts of activity—i.e., a sort of phase alternance
[33]—rather than to a unique point.
SOC vs SOB: beyond mean field.—To investigate how

this simple mean-field picture changes in spatially extended
noisy systems, we first recap the stochastic theory of SOC
and then extend it to first-order transitions. The phase
transition of SOC systems, in their fixed-energy counter-
part, is described by the following set of Langevin
equations incorporating spatial coupling (diffusion) and
noise in a parsimonious way:

∂tρð~x; tÞ ¼ ½aþ ωEð~x; tÞ�ρ − bρ2 þD∇2ρþ σηð~x; tÞ
∂tEð~x; tÞ ¼ D∇2ρð~x; tÞ; ð1Þ

where ρð~x; tÞ and Eð~x; tÞ are fields [some dependencies on
ð~x; tÞ have been omitted], b > 0, D and σ are the diffusion
and noise constants, respectively, and ηð~x; tÞ is a zero-mean

multiplicative Gaussian noise with hηð~x; tÞηð ~x0; tÞi ¼
ρð~x; tÞδð~x − ~x0Þδðt − t0Þ imposing the absorbing state con-
dition. Equation (1) was proposed on phenomenological
grounds [19,20] (see also [35]) but it can be rigorously
derived from microscopic rules (using a coherent-state
path-integral representation [36]) [37].
The fixed-energy theory described by Eq. (1) exhibits a

continuous phase transition at Ēc (where Ē is the spatially
averaged energy). More remarkably, switching on slow
driving and boundary dissipation in Eq. (1) [39], it self-
organizes to Ē� ¼ Ēc. The width of the spatially averaged
energy distribution PðĒÞ in the SOC ensemble around Ēc
becomes progressively smaller as system size is enlarged,
ensuring that in the thermodynamic limit the system self-
organizes exactly to its critical point [40]. This Langevin
approach has established a connection between SOC and
standard nonequilibrium phase transitions [15,16,19,20],
allowing for further computational and theoretical [44,45]
understanding.
In full analogy with the mean-field case, we propose the

following equations for discontinuous transitions:

∂tρð~x; tÞ ¼ ½aþωEð~x; tÞ�ρ− bρ2 − cρ3 þD∇2ρþ σηð~x; tÞ
∂tEð~x; tÞ ¼D∇2ρð~x; tÞ; ð2Þ

with b < 0 and c > 0. In what follows, we vary b (keeping
other parameters fixed) to explore whether diverse regimes

emerge. Direct numerical integration of Eq. (2) can be
performed in a very efficient way using the split-step
integration scheme of [44]. Simulations are started by
either low or high densities to enable the system to reach
different homogeneous steady states, which are separated
by a spinodal line. Results, summarized in Fig. 3, confirm
that both the size of the jump and the bistability region
shrink upon reducing jbj and that they shrink significantly
with respect to their mean-field values (Fig. 2).
Remarkably, for small values, e.g., b ¼ −0.1, the transition
becomes continuous, even if the mean-field approximation
predicts a discontinuous one. As discussed in [46], fluc-
tuation effects typically soften the discontinuity, shrink
bistability regions, and can even alter the order of the phase
transition, leading to noise-induced criticality. For values of
jbj larger than a certain (unspecified) tricritical value jbT j
the transition remains discontinuous [47]. We have also
verified that there exists a point of true phase coexistence
within the bistability regime, i.e., a Maxwell point [defined
as the value of Ē, EM, at which a flat interface separating
two halves of the system, one in each phase, does not move
on average, while, for Ē < EM (respectively Ē > EM) the
absorbing (active) phase invades the other one; see dashed
lines in Fig. 3]. Moreover, the observed metastability
region shrinks upon enlarging system size.
Having characterized the fixed-energy ensemble, we

now let the system self-organize by switching on slow
driving and boundary dissipation as in SOC, and allow the
system to reach its steady state. As illustrated in Fig. 3, we
observe different scenarios depending of the value of jbj:

FIG. 3. The three rows show (upper) the steady-state density ρ
as a function of E in the fixed-E ensemble; (central) color-
temperature plot of the conditional size distributions PðsjĒÞ as a
function of E, king avalanches plotted with a distinct color
(magenta); and (lower) PðsÞ for different system sizes; for large
jbj, king avalanches coexist with smaller ones. The three columns
show three different values of b < 0 (b ¼ −0.1, b ¼ −1, and
b ¼ −2, respectively), representatives of different regimes. Sys-
tem size in the first two rows is L2 ¼ 212, and L2 ¼ 212 (red), 214

(blue), and 216 (yellow) in the bottom one. Parameter values are
a ¼ −1.3, ω ¼ c ¼ D ¼ σ ¼ 1.
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(i) Noise-induced critical regime–for sufficiently small
values of jbj (such as b ¼ −0.1) the transition becomes
continuous and the phenomenology is as in SOC (scale-
invariant avalanches with τ ≈ 1.26 and τt ≈ 1.48). (ii) King-
avalanche dominated regime—in the opposite limit of large
values of jbj (e.g., b ¼ −2), we observe large peaks in PðsÞ
and PðtÞ for large events or kings, coexisting with smaller
(regular) avalanches that are exponentially truncated above
a characteristic cutoff time or size, and are responsible for
large energy-dissipation events. (iii) Hybrid regime—for
intermediate values of jbj (e.g., b ¼ −1.0), one has a
situation similar to that of the facilitated sandpile
(Fig. 1), in which power-law distributed regular avalanches
(with τ ≈ 3=2 and τt ≈ 2) coexist with kings. In cases (ii)
and (iii), EðtÞ exhibits characteristic sawtoothlike profiles
(as the facilitated sandpile of Fig. 1) that—as revealed by
the presence of a clear peak in their power spectra (not
shown)—are quasiperiodic; i.e., E cycles between high and
low values (the larger the jbj the larger the excursions).
Indeed, Fig. 3 (central) shows the conditional distribution
PðsjĒÞ, illustrating that avalanches can be triggered at
diverse values of Ē. However, even if for any finite system
SOB leads to excursions all through the bistability region,
we have verified that such regions (and excursions) shrink
upon enlarging system size; thus, in the thermodynamic
limit, Ē self-tunes in SOB systems to a unique point of
phase coexistence—the Maxwell point—much as in SOC
[21] and unlike the mean-field picture.
Let us now describe the properties of regular and king

avalanches. For regular ones, recall that right at the
Maxwell point Ē ¼ EM both phases are equally stable,
and thus the dynamics is as in the so-called compact
directed percolation [48] or voter model, in which a stable
phase tries to invade an equally stable one, giving rise to a
complex dynamics at the boundaries separating both. This
type of dynamics is well known to lead to τ ¼ 3=2 and
τt ¼ 2 in two (or larger) dimensions [30,48–50], so that, as
Ē wanders around EM, one could anticipate that PðsÞ ∼
s−3=2 for regular avalanches, with some cutoff that depends
on jbj (see below).
As illustrated in Fig. 3, king avalanches (magenta) can be

triggered whenever Ē is above the Maxwell point of the
fixed-energy diagram (Fig. 3), i.e., Ē ≥ EM (and not only
when Ē reaches the limit of instability of the absorbing
state, as happens in the mean-field picture). The reason for
this lies in the existence of a nucleation process [1] as we
describe now. Imagine that, after driving the system, a large
fluctuation creates a large droplet of activity, of linear size
or radius R, in an otherwise absorbing configuration. To
investigate the fate of such a droplet in a simple though
approximate way, we switch off noise by fixing σ ¼ 0 in
Eq. (2). In this deterministic approximation, one can safely
define a free energy that has two additive contributions: one
for the space integral of the potential VðρÞ [shown in
Fig. 2(c)], and a surface tension term proportional to

D
R
d~xð∇ρÞ2. When Ē > EM, the potential at the active

steady state (ρ > 0) is negative (Δ < 0) and thus deeper
than that at 0 [Fig. 2(c)]. Thus, the creation of an active
droplet leads to a competition between the gain of bulk free
energy and the penalty associated with the formation of an
interface between the active and absorbing states. Equating
these two trends, one obtains a critical radius Rc ≈ 2D=Δ
above which the bulk contribution dominates and the
droplet expands ballistically and compactly through the
whole system [1], giving rise to a king avalanche. This
heuristic argument does not strictly apply in the presence of
(multiplicative) noise for which a free energy cannot even
be defined. However, recent analytical work has shown that
the most probable path to jump from active to inactive
states in this type of bistable noisy system involves the
creation of a critical droplet that then expands ballistically
through the system [51], putting our heuristic approach on
more solid ground. Finally, observe that the larger the jbj
the smaller the Rc, and the stronger the cutoff for regular
avalanches.
To visualize these effects, we have kept track of different

avalanches—both regular and kings—and computed their
averaged shape [52]; this is close to a semicircle for regular
avalanches, as corresponds to random-walklike processes
[52], while kings, after a transient time, have a radically
different triangular shape (with linear growth stemming
from ballistic expansion, followed by ballistic extinction
stemming from large energy dissipation) [53].
In summary, we have defined the concept of SOB by

extending well-known ideas of self-organization to critical
points to systems exhibiting bistability and phase coexist-
ence and provided an explanation for the emergence of
bimodal distributions—combining aspects of scale invari-
ance and bistability—as often observed in biological
problems. Our goal here is not analyzing a specific example
of a real system exhibiting SOB—of which we believe
there are plenty of instances—but rather to characterize the
general mechanism, much as done in SOC. The most
promising specific example to be pursued is that provided
by real neural networks (for which synaptic resources play
the role of E and neural activity that of ρ), in which
avalanches appear to be distributed with exponents τ ≈ 3=2
and τt ≈ 2 [9]. These values—at odds with the expectations
of SOC in either two- or three-dimensional systems—are
usually justified by making assumptions about the archi-
tecture of the underlying network of connections, a
hypothesis that is not always obvious. Furthermore, anoma-
lously large (king) events, inconsistent with the predictions
from criticality, appear when inhibitory mechanisms are
repressed or under epileptic conditions [10] and a nontrivial
temporal organization of neural avalanches [54] has been
reported to exist. Thus, we suggest that it should be
carefully scrutinized under which circumstances cortical
networks (which are known to have facilitation mecha-
nisms) are not self-organized to a critical point (SOC)—as
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usually considered—but to a region of bistability (SOB)
with its concomitant mean-fieldlike avalanche exponents,
the natural possibility of king avalanches, and nontrivial
temporal organization. In future work, we will extend our
theory in a number of ways, including self-organization in
the absence of conservation laws and/or of infinitely
separated time scales, as well as allow for global rather
than pointlike driving; these extensions will hopefully
allow for a more direct connection with biological systems.
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