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By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of
metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states—
distinct from the asymptotic stationary state—is a manifestation of a separation of time scales due to a
splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral
structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of
metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the
metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free
subspaces.
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Introduction.—Stochastic many-body systems often dis-
play a complex and slow relaxation towards a stationary
state. A common phenomenon is that of metastability,
where the initial relaxation is into long-lived states, with
subsequent decay to true stationarity occurring at much
longer times. This separation of times in the dynamics has
evident experimental manifestations, for example, in two-
step decay of time correlation functions. Metastability is a
common occurrence in classical soft matter [1], glasses
being the paradigmatic example [2,3].
There is much current interest in the nonequilibrium

dynamics of quantum many-body systems, both closed
(i.e., isolated) and open (i.e., interacting with an environ-
ment). This includes issues such as thermalization [4–7],
many-body localization [8–10], and aging and glassy
behavior, where questions about time scales and partial
versus full relaxation play central roles [11–16]. From the
quantum information perspective, decoherence-free sub-
spaces [17–20] and noiseless subsystems [21–23], where
parts of the Hilbert space are protected against external
noise, are ideal scenarios for implementing quantum
information processing [24]. Since experiments are per-
formed in finite time, it is sufficient (and practical) to
consider manifolds of coherent states that are only stable
over experimental time scales, i.e., metastable, with respect
to noise.
Given this broad range of problems, it would be highly

desirable to have a unified theory of quantum metastability.
In this Letter we lay the ground for such a theory for the
case of open quantum systems evolving with Markovian
dynamics. Our starting point is a well-established approach
for metastability in classical stochastic systems [25–29].
We develop an analogous method for quantum Markovian
systems based on the spectral properties of the generator of
the dynamics. The separation of time scales implies a
splitting in the spectrum, and this spectral division allows

us to construct metastable states from the low-lying
eigenmatrices of the generator. Based on perturbative
calculations for finite systems, we argue that the manifold
of metastable states is in general composed of disjoint
states, noiseless subsystems, and decoherence-free subspa-
ces. We illustrate these possibilities with simple examples.
We further discuss how to reduce the overall dynamics to a
low-dimensional effective motion in the metastable mani-
fold, and consider the associated behavior of time
correlations.
Quantum metastability and spectral properties.—We

consider an open quantum system evolving under
Markovian dynamics, with the Linbladian master equation
ðd=dtÞρðtÞ ¼ LρðtÞ [30–33], where the generator of the
dynamics L is

Lð·Þ ≔ −i½H; ð·Þ� þ
X

j

�
Jjð·ÞJ†j −

1

2
fJ†jJj; ð·Þg

�
: ð1Þ

The state of the system at time t is ρðtÞ, the system
Hamiltonian is H, and fJjg are quantum jump operators
[34]. While in general the linear operator L is not
diagonalizable, one can find its eigenvalues fλk; k ¼
1; 2;…g [which we order by decreasing real part,
ReðλkÞ ≥ Reðλkþ1Þ] each corresponding to an eigenspace
or a Jordan block. Since L generates a proper quantum
stochastic (completely positive trace-preserving) dynamics
of ρðtÞ, its largest eigenvalue vanishes, λ1 ¼ 0, and its
associated right eigenmatrix R1 is the stationary state, R1 ¼
ρSS (the corresponding left eigenmatrix being the identity
L1 ¼ I) [35]. The real parts of the eigenvalues fλk>1g give
the relaxation rates of all the modes of the system
dynamics. In particular, the second eigenvalue λ2 deter-
mines the spectral gap, whose inverse is related to the
longest time scale τ of the relaxation of the system to the
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stationary state, i.e., ∥ρðtÞ − ρSS∥ ∼ e−t=τ with τ ∼
1=jReðλ2Þj (where ∥A∥ ≔ Tr

ffiffiffiffiffiffiffiffiffi
A†A

p
).

Metastability manifests as a long time regime when the
system appears stationary, before eventually relaxing to
ρSS. This occurs when low lying eigenvalues become
separated from the rest of the spectrum. Let us assume
that this separation occurs between the mth mode and the
rest, that is, jReðλmÞj ≪ jReðλmþ1Þj. We can then write for
the time evolution from an initial state ρin

ρðtÞ ¼ etLρin ¼ ρSS þ
Xm

k¼2

etλkckRk þ ½etL�I−Pρin; ð2Þ

where ck ¼ TrðLkρinÞ are coefficients of the initial state
decomposition into the eigenbasis of L [35]. In Eq. (2)
we have introduced the projection P on the subspace of the
first m eigenmatrices, Pρ ≔ ρSSTrðρÞ þ

P
m
k¼2 RkTrðLkρÞ,

and ½etL�P ≔ PetLP. Expanding the exponentials in the
sum, and assuming λ1;…; λm are real, Eq. (2) can be
rewritten as [36]

ρðtÞ ¼ ρSS þ
Xm

k¼2

ckRk

þOð∥½tL�P∥Þ þOð∥½etL�I−P∥Þ: ð3Þ

The dynamics will appear stationary for any initial con-
dition when the last two terms are small. This defines a
range τ00 ≪ t ≪ τ0 where metastability occurs. Intuitively,
the last term can be discarded if τ00 ∼ 1=jReðλmþ1Þj and the
overlap of the initial state with the suppressed modes is not
too large, so that the sum over many modes of small
amplitude can be neglected. Thus, for times τ00 ≪ t the
system relaxes into a state in the metastable manifold
(MM). Apparent stationarity requires ∥½tL�P∥ ≪ 1, which
defines the upper limit of the metastable interval: τ0 ∼
1=jReðλmÞj (for m not too large).
More generally, the eigenvalues could be complex,

appearing in conjugate pairs, λk;1 ¼ λ�k;2, with imaginary
parts that cannot be discarded. Taking this into account, a
metastable state ρMS in the MM would read in general [37]

ρMS ¼ ρSS þ
Xm

k

ck0ðtÞRk
0: ð4Þ

When λk is real, we have that ck0ðtÞ ≔ ck and Rk
0 ≔ Rk. For

conjugate pairs, λk;1 ¼ λ�k;2, we have that ck;1 ¼ c�k;2 and
ck;10 ≔ jck;1j cosðωktþ δkÞ and ck;20 ≔ jck;1j sinðωktþ δkÞ,
where Rk;1

0 ≔ Rk;1 þ Rk;2 and Rk;2
0 ≔ iðRk;1 − Rk;2Þ with

δk ≔ argðckÞ, ωk ≔ ImðλkÞ. In Eq. (4) we have discarded
the second line of Eq. (3), which leads ρMS to be
approximately positive with its negative part bounded by
the corrections to the invariance of the MM in Eq. (3). The
remaining time dependence in Eq. (4) constitutes rotations
within the MM that leave the MM invariant, which

necessarily correspond to nondissipative evolution for
τ00 ≪ t ≪ τ0, which we also discuss below.
Beyond the metastable regime, t≳ τ0, the dynamics will

correspond to motion in the MM towards the true stationary
state, which is reached at times t ≫ τ. This effective
dimensional reduction due to a separation of time scales
is a key result of this Letter.
Geometrical description of quantum metastability.—The

MM can be described geometrically by generalizing the
classical method of Refs. [25–29]. In the metastable regime
the system state is well approximated by a linear combi-
nation of them low-lying modes, see Eqs. (4). A metastable
state is determined by a vector ðc20;…; cm0Þ in Rm−1. We
thus refer to the MM as being (m − 1) dimensional, but
note that each point on this manifold represents a D2

density matrix ρMS, whereD ¼ dimðHÞ is the dimension of
the Hilbert spaceH of the system. Furthermore, the MM is
a convex set as it is a linearly transformed convex set of
initial states ρin.
Let us first consider the case of m ¼ 2. Because of the

convexity of the MM, any metastable state is a mixture of
extreme metastable states (EMSs). In this case they are just
two, ~ρ1 and ~ρ2, obtained from

~ρ1 ¼ ρSS þ cmax
2 R2; ~ρ2 ¼ ρSS þ cmin

2 R2; ð5Þ
where cmax

2 and cmin
2 are the maximal and minimal eigen-

values of L2, respectively [35]. Note that ~ρ1;2 are (approx-
imately) positive despite R2 being nonpositive. From
Eq. (3) it follows, up to corrections, that ρðtÞ ¼ p1 ~ρ1 þ
p2 ~ρ2 with probabilities p1;2 ¼ Trð ~P1;2ρinÞ, where

~P1 ¼ ðL2 − cmin
2 IÞ=Δc2; ~P2 ¼ ð−L2 þ cmax

2 IÞ=Δc2;

and Δc2 ≔ cmax
2 − cmin

2 . Note that the observables ~P1;2

satisfy ~P1;2 ≥ 0 and ~P1 þ ~P2 ¼ I. This leads to ~ρ1
and ~ρ2 being (approximately) disjoint [38].
Example I: three-level system. Consider the three-level

system of Fig. 1(a), with the Hamiltonian H ¼ Ω1ðj1ih0jþ
j0ih1jÞ þΩ2ðj2ih0j þ j0ih2jÞ and a jump operator J ¼ffiffiffi
κ

p j0ih1j. When Ω2 ≪ Ω1, the dynamics can be “shelved”
for long times in j2i, giving rise to intermittency in
quantum jumps [32], which can be seen as the coexistence
of “active” and “inactive” dynamical phases [44].
Figure 1(b) shows the spectrum of L: the gap is small
for Ω2 ≪ Ω1, the two leading eigenvalues detach from
the rest (i.e., m ¼ 2), and the dynamics is metastable.
Figure 1(c) illustrates the trace distance of the state ρðtÞ to
the MM starting from ρin ≠ ρSS: an initial decay on times of
order of τ00 to the nearest point on the MM (in this case to an
EMS) is followed by decay to ρSS on times of order τ0 ¼ τ
(since m ¼ 2). The MM for this m ¼ 2 case is a one-
dimensional simplex (i.e., a convex set whose interior
points uniquely represent probability distributions on the
vertices), see Fig. 1(d).
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For m > 2 the convex set MM of possible coefficients
can have more than m extreme points. For classical
dynamics it has been proven that this set is well approxi-
mated by a simplex [27], whose vertices correspond to m
disjoint EMSs and its barycentric coordinates to the
probabilities of a metastable state decomposed as a mixture
of the EMSs, cf. Fig. 1(d). For quantum dynamics and
m > 3, we expect the structure of the MM to be richer than
just a simplex. As we describe below, the MM can in
general also include decoherence-free subspaces (DFSs)
[17–19] and noiseless subsystems (NSSs) [21,22] which
are protected from dissipation in the metastable regime, as
the next example shows.
Example II: collective dissipation and a metastable

DFS. Consider a two-qubit system with the
Hamiltonian H ¼ Ω1σ

x
1 þ Ω2σ

x
2, and a collective jump

operator J¼ ffiffiffiffiffi
γ1

p
n1σ−2 þ

ffiffiffiffiffi
γ2

p ð1−n1Þσþ2 . When Ω1;2 ≪ γ1;2

there is a small gap and the four leading eigenvalues of L
detach from the rest, Fig. 2(a). This is related to the fact that
any superposition of j01i and j10i is annihilated by J.
Figure 2(b) maps out the MM by randomly sampling all
(pure) initial states ρin from H and obtaining their corre-
sponding metastable state via Eq. (4): the MM is an affinely
transformed Bloch ball corresponding to a DFS of a qubit
within the metastable regime τ00 ≪ t ≪ τ0. It is important to
note that (i) this coherent structure is not the consequence
of a symmetry, as for γ1 ≠ γ2 the system dynamics neither
has a U(2) nor an up-down nor a permutation symmetry,
cf. Ref. [45]; (ii) the smallest m for which we can obtain a
DFS is m ¼ 4, as in this case.
Structure of metastable manifold.—We aim to find the

general structure of the MM for two classes of systems for
which L has a small gap: (A) finite systems where the gap
closes at some limiting values of the parameters in L (such
as Ω2 → 0 in example I, and Ω1;2 → 0 in example II), and
(B) scalable systems of size N where the gap closes only in
the thermodynamic limit N → ∞ (such as the dissipative
Ising model of Ref. [48]).
For class A we prove via non-Hermitian degenerate

perturbation theory [38] that the structure of a metastable
state ρMS ∈ MM is given by the following block structure

ρMS ¼
Xm0

l¼1

pl ~ρl ⊗ ωl þ corrections; ð6Þ

with H being the orthogonal sum H ¼ ⨁
l
Hl ⊗ Kl, where

~ρl are fixed states on Hl (cf. the EMSs above), ωl are
arbitrary states on Kl, and pl are probabilities. Up to the
corrections, this is a general structure of a manifold of
stationary states of open quantum Markovian dynamics
[49]. The metastable regime is given by τ0 ≪ t ≪ s−2τ0,
where τ0 is the relaxation time for the unperturbed
dynamics and s is the scale of the perturbation [38].
The corrections in Eq. (6) are of the order of the corrections
to the invariance of the MM during the metastable time
regime, cf. Eq. (3). The (m − 1) coefficients ðc20;…; cm0Þ
that determine ρMS, see Eq. (4), correspond approximately
to an affine transformation of the m entries of plωl

(l ¼ 1;…; m0) in Eq. (6) with
P

m0
l¼1 pl ¼ 1 [38].

Therefore, the MM approximately represents the degrees
of freedom of the classical-quantum space in Eq. (6).
For class B we conjecture that the coefficients represent-

ing the MM converge to the degrees of freedom of a
classical-quantum space as in Eq. (6), when the separation
in the spectrum becomes more and more pronounced as
N → ∞. Note that the dimensionality of the MM does not
change with N and thus the convergence is well defined.
This general conjecture is based on the necessary condition
that the low-lying spectrum of L features only trivial Jordan
blocks [50]. Note that a conjecture of the ρMS structure
being approximately that of stationary states, cf. Eq. (6), is
a stronger claim. A proof of the former conjecture for class

FIG. 1. Example of metastability in a three-level system.
(a) Level scheme and transitions. (b) Spectrum of L showing
the separation of time scales between ðλ1; λ2Þ (full and dashed)
and fλk>2g (shaded), for the case κ ¼ 4Ω1, Ω2 ¼ Ω1=10.
(c) Illustration of the distance of the state ρðtÞ to the MM. We
consider ρðtÞ starting from pure states corresponding to the
eigenvectors of L2 with maximal [top (red)] and minimal
eigenvalues [bottom (blue)] cmax

2 and cmin
2 . The full curves

indicate the nearest state on the MM, ρMSðtÞ, to the full state
ρðtÞ. The shaded region indicates the scale of the “error” ∥δρðtÞ∥
with δρðtÞ ≔ ρðtÞ − ρMSðtÞ. On times of order τ00 (open circle) the
state ρðtÞ relaxes to the MM (in this case to either of the EMSs
~ρ1;2), as seen by the shaded region decreasing to zero. On times of
order τ (filled circle) there is an eventual relaxation to the
stationary state ρSS (central, black line). Since m ¼ 2, in this
case τ0 ¼ τ. (d) The MM is a one-dimensional simplex. (e) Nor-
malized autocorrelation CðtÞ of the observable j1ih1j − j2ih2j, in
the stationary state. For decreasing Ω2=Ω1 (i.e., decreasing gap),
metastability in the regime τ00 (open symbols) to τ (filled
symbols) is increasingly pronounced.
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B appears challenging at this moment; see the comment
in Ref. [38].
The blocks in Eq. (6) can be of three kinds. (i) When

dimðKlÞ ¼ 1, the lth block is a disjoint EMS. This is the
case in example I, where there are two EMSs ~ρ1;2, with
metastable states being mixtures of them. For classical
systems the MM is always approximately a simplex of m
disjoint EMSs [27] with probabilities representing the
classical degrees of freedom. (ii) When dimðKlÞ > 1 and
dimðHlÞ ¼ 1, Kl is a DFS protected from the noise. This is
the case in example II where the MM is a qubit. (iii) When
dimðKlÞ > 1 and dimðHlÞ > 1, Kl is also protected from
noise and termed a NSS. The structures (ii) and (iii) cor-
respond to quantum degrees of freedom (ωl) and do not
appear in the case of classical dynamics [27]. In general the
number of blocks in Eq. (6) is m0 ≤ m, with equality
occurring only when there are no DFSs or NSSs.
Effective motion in the metastable manifold.—In the

metastable regime, τ00 ≪ t ≪ τ0, the metastable states
appear stationary, or perhaps rotate within the MM. This
latter case corresponds to either (i) coherent motion in the
DFSs or NSSs where the matrices ωl of Eq. (6) evolve
unitarily in time, or (ii) classical rotations with a frequency
that is limited by the dimensionality of the MM [51]. For
class A systems only case (i) is possible [38,46,47].
For longer times, t≳ τ0, the MM contracts exponentially

towards ρSS. This is illustrated in Fig. 2(c) for example II.
This low dimensional evolution in the MM is well
described by an effective generator Leff ≔ ½L�P, which
can be considered as the generator of the dynamics
averaged over intervals τ00. If the MM is approximately a

simplex (i.e., containing no DFSs or NSSs) the motion
generated by Leff is that of classical transitions between
macrostates described by the EMSs (see Ref. [38] for
m ¼ 2 and Ref. [52] for the general case). For class Awhen
the MM contains coherent subsystems or subspaces, the
motion preserves the structure of Eq. (6) and can be shown
to be trace preserving and approximately completely
positive [38,53,54]. Note that the decoupling of the
(slower) classical dynamics from the (faster) quantum
evolution in the MM requires further separation in low-
lying eigenvalues of L. This is illustrated in Fig. 2(c) for
example II.
In practice, metastability can be accessed through the

connected autocorrelation [14] of the measurementM of a
system observable, even in the stationary state, CðtÞ ≔
TrðMetLMρSSÞ − TrðMρSSÞ2 [55]; see Figs. 1(e) and
2(d). The first measurement M perturbs ρSS, and the state
conditioned on the result partially relaxes towards the MM
for t≲ τ00. In the metastable regime correlations will persist
as the different blocks in Eq. (6) do not communicate, and
for the case where all low-lying eigenvalues are real,
CðtÞ ≈ TrðMPMρSSÞ − TrðMρSSÞ2. When the low-lying
eigenvalues are complex, oscillations of CðtÞ can occur in
the metastable regime, as in Fig. 2(d). When t≳ τ0, the
dynamics begins to relax back towards ρSS, erasing all
information about the initial result [CðtÞ ≈ 0] for t ≫ τ.
Outlook.—The next steps in the development of the

theory of quantum metastability presented here include the
following. (i) For many-body systems, where the direct
diagonalization of L is impractical, it should be possible to
use dynamical large-deviation methods [56] to identify

FIG. 2. Example of a coherent metastable manifold. (a) Spectrum of L for example II (at γ1 ¼ 4γ2,Ω1 ¼ 2Ω2 ¼ γ2=50). The first four
eigenvalues (m ¼ 4) split from the rest (shaded) and define the MM. Note the further splitting between ðλ1; λ2Þ and ðλ3; λ4Þ (which are
almost degenerate). (b) The MM is a qubit. The dots represent the metastable states reached from random initial pure states. They map
out under Eq. (4) an affinely transformed Bloch ball (shaded). The large dot (green) is ρSS; the curves indicate paths in the MM taken by
the states evolving from the extreme eigenvectors of L2 (red and blue), and L3 and L4 (purple) towards ρSS. (c) Time evolution in the
MM (affinely transformed to a Bloch ball—the planes are projections in the direction of the eigenbasis of ρSS and another orthogonal
direction): the MM contracts towards a one-dimensional simplex before relaxing eventually to ρSS, due to the splitting between the first
two eigenvalues and the next two, see panel (a). (d) Normalized autocorrelation CðtÞ for the observable σz1 − σz2 (green, solid). Same for
the case where there is an extra perturbing Hamiltonian ΔH ¼ Ωσx1 ⊗ σx2, which induces a rotation in the MM, manifesting in
oscillations in CðtÞ in the metastable regime (black, dashed). This realizes in a metastable system the proposal of Refs. [46,47] for
implementing operations in a DFS.
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dynamically the different blocks in Eq. (6) by biasing
ensembles of quantum trajectories [44]. This approach
could be implemented numerically by generalizing
classical path sampling [57] and/or cloning techniques
[58]. (ii) In order to reveal the structure of the MM, one
needs to find a general computational scheme that can
identify the basis in which metastable states look explicitly
as in Eq. (6). Such a method would be useful to uncover
DFSs and NSSs more generally. Also, it would be
interesting to consider more broadly DFSs that do not
arise as a consequence of symmetry, cf. example II above.
(iii) We have considered here metastability in the case
of Markovian dynamics generated by a Lindbladian L.
Metastability occurs also when the dynamics is non-
Markovian, see, e.g., Ref. [59]. It should be possible to
generalize the method introduced above to the non-
Markovian case of a time-dependent generator LðtÞ.
(iv) A significant challenge is to extend the ideas presented
here to study metastability in closed quantum systems. This
would be relevant to the fundamental problems of thermal-
ization [5] and many-body localization [8].
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