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The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied
within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into
the different channels are derived. Thegeneralmethod is applied to the drivendissipative two-state system. It is
shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may
constitute the major dissipative channel. Results in analytic form are presented for the particular valueK ¼ 1

2

of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced
coherences and quantum stochastic resonances. It is found that the general characteristics persists forK near 1

2
.
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Introduction.—A deep understanding and precise control
of energy exchange in strongly coupled systems at the
quantum level may have profound impact both from a
fundamental and a practical point of view. On one side, it
can advance the formulation of a consistent nonequilibrium
thermodynamics for strong coupling. In fact, the question
of how to conceive a consistent thermodynamics for
nonequilibrium scenarios with strong system-reservoir
coupling has attracted recent interest [1–5], and the issue
is currently a subject of controversy. Substantial progress
has recently been made for classical systems [6]. On the
applicative side, it can have great impact on the active field
of quantum optimal control with pioneering applications in
biology and information technology [7–9].
The natural setting to study energy exchange and dis-

sipation is to consider an externally driven quantum system
coupled to one or several heat reservoirs [10–15]. This might
also serve as a building block in the study of more complex
systems. Usually, the system-reservoir entity is studied in the
weak-coupling limit. This is technically advantageous, since
perturbative methods can be used. The weak coupling
assumption is well justified in the theoretical analysis of
experiments in which onewould like to have long coherence
times. There are, however, many physical systems for which
the interaction energy is comparable with the system energy.
Among all, themost striking ones are, e.g., a biomolecule in a
solvent and photosynthetic systems, in which energy is
absorbed and efficiently transported over long distances. It
is nowwell established that the vast efficiency of this process
cannot be explained with concepts of classical charge
transport. Rather it exhibits not only quantum features
[16–18] but strong interaction with a structured non-
Markovian reservoir seems to be crucial for thehigh transport
efficiency [9,19–21].
With such motivations, it is natural to ask if similar

spectacular effects may arise in the energy transfer char-
acteristics of small and well-controlled quantum systems,

when they are externally driven and strongly coupled to a
heat reservoir. The time-dependent force is continuously
pumping energy into the system, and thus drives it out of
equilibrium [22,23]. Coincidently, the strong coupling with
the environment makes the dynamics more intricate, since
the system can dissipate energy through different channels.
The convoluted interplay between all these competitive
contributions and the identification of the dissipative
channels involved is the subject of this Letter.
First, we set the stage by facing the problem from a very

general perspective. To this end we establish a functional
integral approach for the characteristic function of the
energy transfer statistics, in which the dissipative channels
to the reservoir and to the interaction are identified. Then
we apply this method to the versatile spin-boson system.
We establish the energy balance relation and analyze the
inherent dissipative channels. Results in analytic form are
presented for the particular value K ¼ 1

2
of strong Ohmic

dissipation [24–27]. It is shown that the system-reservoir
coupling can be the dominant dissipative channel in
particular regions of the parameter space. It is found that
the drive-induced coherences and quantum stochastic
resonance features of the model [28–31] are reflected in
the energy transfer characteristics. Finally, it is shown that
the characteristic features also hold for K near 1

2
.

General approach to energy exchange.—The
Hamiltonian of the system plus reservoir isHðtÞ ¼ HSðtÞ þ
HR þHI with the system part HSðtÞ ¼ H0 þ Vðq; tÞ,
the reservoir part HR ¼ P

α½ðp2
α=2mαÞ þ 1

2
mαω

2
αx2α�,

and the translational-invariant couplingHI ¼ −q
P

αcαxα þ
1
2

P
αðc2α=mαω

2
αÞ [25,27,32,33]. The driving is carried by the

time-dependent potential Vðq; tÞ. All effects of the reservoir
coupling on the system are captured by the spectral den-
sity JðωÞ ¼ ðπ=2ÞPαðc2α=mαω

2
αÞ × δðω − ωαÞ.

We are interested in the energy flow of the driven system
coupled strongly to the heat bath. In the usually studied
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weak coupling limit, it is assumed that all the energy is
dissipated into the reservoir [12,13,34–38]. In this case, the
dissipated energy is determined by a double projective
measurement of the reservoir energy at the beginning and at
the end of the evolution.
If the weak coupling limit is not met, the system-bath

interaction represents an additional dissipative channel. In
the sequel, we present an approach which allows us to
analyze the time dependence of the various energy transfer
contributions.
In a complete description of the energy transfer, knowl-

edge of both the variations of the energy dissipated into the
reservoir, hERðtÞi≡ hHRðtÞi − hHRð0Þi, and into the res-
ervoir plus interaction, hERIðtÞi≡ hHRðtÞi þ hHIðtÞi−
hHRð0Þi − hHIð0Þi, is essential. Here the average of the
observable O is defined as hOðtÞi ¼ Tr½OρðtÞ�, where ρðtÞ
is the density operator. Moreover the variation of energy
related to the interaction can be inferred simply by the
difference hEIðtÞi≡ hERIðtÞi − hERðtÞi. It is worth under-
lining that these observables can be related to specific
measurement protocols. Assume that at time t ≤ 0 the
system and the bath are decoupled and the system dwells
in a diagonal state of the reduced density matrix (RDM)
with probability distribution pS(qð0Þ). Initially we have
hqð0Þjρð0Þjqð0Þi ¼ pS(qð0Þ)e−βHR=Tr½e−βHR �, where β ¼
1=T is the inverse temperature (throughout we put
kB ¼ ℏ ¼ 1). Immediately before both the coupling with
the reservoir and driving force are switched on, at time
t ¼ 0, the bath energy is measured. At a later time t, we
either switch off the coupling and measure the bath energy
again, or we coevally measure the energy of the bath and
the coupling. These measurements may be projective
[36,39,40] or performed with a full quantum detector
[41]. The moment generating function (MGF) Gλðν; tÞ
embodies the entire statistics of these measurement proto-
cols. Importantly, it can be written as the trace of a
generalized density operator [38,39],

Gλðν; tÞ ¼ Tr½eiνðHRþλHIÞUt;0e−iνHRρð0ÞU†
t;0�: ð1Þ

Here the operator Ut;0 implements the unitary time evo-
lution of the composite system. Given the MGF Gλðν; tÞ,
the probability distribution PðEλ; tÞ for the energy transfer
amount Eλ is PðEλ; tÞ ¼

R
dνGλðν; tÞe−iνEλ . The nth deriva-

tive of the MGF taken at ν ¼ 0 yields the nth moment

of the energy, hEðnÞ
λ ðtÞi ¼ ð−iÞndnGλðν; tÞ=dνnjν¼0. Here

we focus on the first moment, i.e., the energy transferred on

average, hEλðtÞi ¼ hEð1Þ
λ ðtÞi. Finally, the control parameter

λ serves to treat both protocols on equal footing. For λ ¼ 0,
we meet the reservoir measurement hERðtÞi [36,39]. For
λ ¼ 1, we are actually probing hERIðtÞi.
The expression Eq. (1) can be conveniently processed

using a functional integral approach [27,33]. This pro-
cedure is a generalization of the one exposed in Ref. [36]
and the details can be found in the Supplemental Material
[42]. We readily get for hEλðtÞi the path sum representation
in terms of the quasiclassical path ηðτÞ ¼ ½qðτÞ þ q0ðτÞ�=q0

and fluctuation path ξðτÞ ¼ ½qðτÞ − q0ðτÞ�=q0, where q0 is a
length unit, as

hEλðtÞi ¼
Z

dηipSðηiÞ
Z

dηf

×
Z

Dη

Z
DξeiSS½η;ξ�F FV½η; ξ�ελ½η; ξ�; ð2Þ

with ηi ¼ ηð0Þ and ηf ¼ ηðtÞ. Here F FV½η; ξ� is the
standard Feynman-Vernon influence functional accounting
for friction and quantum thermal noise, and SS½η; ξ� ¼
SS½q� − SS½q0� is the system’s action related to the double
path fη; ξg. The energy functional is found to read

ελ½η; ξ� ¼ −
1

2

Z
t

0

dτ2

Z
τ2

0

dτ1 _ηðτ2Þ

× ½W1ðτ2 − τ1Þ_ξðτ1Þ þW2ðτ2 − τ1Þ_ηðτ1Þ�

þ
Z

t

0

dτ1f−_ηðτ1ÞW2ðτ1Þηi
þ ð1− λÞηf½W1ðt− τ1Þ_ξðτ1Þ þW2ðt− τ1Þ_ηðτ1Þ�g:

ð3Þ

Here W1ðτÞ ¼ _W0ðτÞ, W2ðτÞ ¼ _W00ð0Þ − _W00ðτÞ, in which
WðτÞ ¼ W0ðτÞ þ iW00ðτÞ is the bath correlation function.
The expression Eq. (2), with Eq. (3), is generally valid

for any composite quantum system with bilinear system-
bath coupling. It may serve as a starting point for the
implementation of powerful numerical schemes [43–47].
Spin-boson model.—To explore the powerfulness of our

approach, consider the dissipative two-state system with
two localized states at a distance q0. In spin representation,
the system Hamiltonian reads [25,27]

HSðtÞ ¼ −
1

2
Δσx −

1

2
ϵðtÞσz; ð4Þ

whereΔ represents the transfer amplitude and ϵðtÞ the time-
dependent bias. The path sum in Eq. (2) can be written in
terms of all possible sequences of visiting the diagonal
states (sojourns) ηj ¼ �1 and off-diagonal states (blips)
ξj ¼ �1 of the RDM [25,27].

hEλðtÞi ¼
X∞
m¼1

�
−Δ2

4

�
m
Z

t

0

D2mftjg

×
X

fξj¼�1g
Bm

X
fηj¼�1g00

FmEmðλÞ: ð5Þ

Here,
R
t
0 D2mftjg denotes time-ordered integrations of the

2m flip times tj. The sums
P

fξj¼�1g and
P

fηj¼�1g00
account for all possible sequences of the m off-diagonal
and m − 1 internal diagonal states of the RDM, respec-
tively. For a given fξ; ηg configuration of the 2m flips, the
factor Bm represents the bias weight, and the influence
factor Fm administers quantum noise and friction (see
Supplemental Material [42]). For simplicity, we have
implied the initial state pSðηiÞ ¼ δηi;1.
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The terms governing the energy transfer to the reservoir
plus interaction, the reservoir, and the interaction alone are
ERI;m ≡ Eλ¼1;m, ER;m ≡ Eλ¼0;m, and EI;m ¼ ERI;m − ER;m.
We readily get

EI;m ¼
Xm−1

k¼0

UkðtÞηk þ i
Xm
j¼1

VjðtÞξj;

ERI;m ¼
Xm−1

k¼0

Ukðt2mÞηk þ i
Xm
j¼1

Vjðt2mÞξj; ð6Þ

where UkðτÞ ¼ _W0ðτ − t2kÞ − _W0ðτ − t2kþ1Þ, and where
VjðτÞ ¼ _W0ðτ − t2jÞ − _W0ðτ − t2j−1Þ.
Interestingly, the expression Eq. (5) for hERIðtÞi can be

converted, upon integration by parts, into an energy balance
relation. Together with the series expressions analogous to
Eq. (5) for the spin functions hσxðtÞi and hσzðtÞi [27], we get

hERIðtÞi≡ hERðtÞi þ hEIðtÞi ¼ −hESðtÞi þ hEexcðtÞi: ð7Þ

Here, hESðtÞi ¼ − 1
2
ΔhσxðtÞi − 1

2
½ϵðtÞhσzðtÞi − ϵð0Þ� is the

mean energy transferred to the system, and the contribution
hEexcðtÞi¼−1

2

R
t
0 dt

0 _ϵðt0Þhσzðt0Þi is the excess energypumped
into the composite system by the work spent by the driving.
These results are valid for general linear dissipation.
Next we turn to Ohmic coupling q20JðωÞ=π ¼

2Kωe−ω=ωc . Here, K is a dimensionless friction strength,
and ωc a cutoff. The Ohmic bath correlation function for
ωcτ ≫ 1 reads [27]

WðτÞ ¼ 2K ln ½ðβωc=πÞ sinhðπjτj=βÞ� þ iπKsgnðτÞ: ð8Þ

With this, Δ2 is combined with ωc in the form Δ2e−W
0ðτÞ as

Δ2−2K
r ¼Δ2=ω2K

c . The scaling limit isωc → ∞withΔr fixed.
For general K, the series for the individual terms of the

relation Eq. (7) cannot be summed in analytic form. However,
if K is near 1

2
, say 0.3≲ K ≲ 0.7, the path sums are feasible

using techniques reported inRefs. [26,27,48]. Following these
lines, hσx=zðtÞi can be written in closed form as

hσzðtÞi ¼ FSðtÞ þ
Z

t

0

dτRðτÞFBðτÞ
Z

t−τ

0

ds

× FSðsÞ sin½φðt − s; t − s − τÞ�;

hσxðtÞi ¼
1

Δ

Z
t

1=ωc

dτRðτÞFBðτÞ cos½φðt; t − τÞ�; ð9Þ

whereRðτÞ ¼ Δ2 sinðπKÞe−W0ðτÞ, andφðt2; t1Þ ¼
R t2
t1 dτϵðτÞ

is the bias phase accumulated between t1 and t2. The form
factors FBðτÞ and FSðsÞ dress the intervals τ and s, in which
the system dwells in an off-diagonal and diagonal state of the
RDM, respectively. They obeyFBð0Þ ¼ FSð0Þ ¼ 1 and drop
to zero on the time scale set by the inverse of the Kondo
frequency, which is ΔK ¼ ½Γð1 − KÞ=2K�1=ð1−KÞΔr for K
near 1

2
.

In the same way the series for hEIðtÞi is summed to

hEIðtÞi ¼
1

2

Z
t

0

dτRðτÞFBðτÞ
Z

t−τ

1=ωc

dsFSðsÞ

× cos½φðt − s; t − s − τÞ�½ _W0ðsÞ − _W0ðτ þ sÞ�:
ð10Þ

Together with the expressions for hESðtÞi and hEexcðtÞi
obtained with Eq. (9), all constituents of the relation Eq. (7)
are given.
For harmonic driving, ϵðtÞ ¼ ϵ0 þ ϵ1 cosðωtÞ, the

initially transient dynamics vanishes on the time scale
set by the system’s relevant relaxation time τ0 ¼
minð1=ΔK; β=πÞ. In the subsequent stationary regime,
the energy transfer contribution hEjðtÞi, where j ¼
S; R; I, exc, is found, upon Fourier expansion of the
respective bias factor, to read

hEjðtÞi ¼ Pjtþ
X
m

Ej;me−imωt: ð11Þ

The first term represents the energy draining into channel j
at constant power Pj in the period t. In particular, we obtain

PS ¼ PI ¼ 0;

PR ¼ Pexc ¼ ϵ1
ω

2

Z
∞

0

dτRðτÞFBðτÞ cosðϵ0τÞJ1½zðτÞ�

×
Z

∞

0

dsFSðsÞ sin
�
ω

�
τ

2
þ s

��
; ð12Þ

where zðτÞ ¼ 2ϵ1 sinðωτ=2Þ=ω, and J1ðxÞ is a Bessel
function. The term Pexc is the constant part of the power
injected into the composite system by the drive in the
stationary state. Evidently, this amount is fully absorbed by
the reservoir.
With the results [Eq. (12)] one directly sees from

Eq. (11), that in the long run the reservoir contribution
hERðtÞi dominates over the interaction one, and lastly the
energy is predominantly dissipated in the environment.
Nevertheless, there are intermediate stationary time regimes
in which the reservoir and interaction contributions are of
the same order of magnitude.
Let us now look more closely at the particular caseK ¼ 1

2
,

inwhich the form factors can be calculated exactly in analytic
form, yielding FBðτÞ ¼ e−γτ=2 and FSðsÞ ¼ e−γs with the
Kondo frequency γ≡ΔKðK¼ 1

2
Þ¼ 1

2
πΔ2=ωc [26,27].

Consider the energy flow until time t. Taking in Eq. (11)
the average over period 2π=ω, we get with Eq. (7) ĒIðtÞ ¼
EI;0 and ĒRðtÞ ¼ PRt − EI;0 − ES;0 þ Eexc;0. In practice,
this corresponds to the case, in which the oscillating terms
are averaged out during the measurement, i.e., by using a
detector unable to resolve energy variation within period
2π=ω. In the scaling regime, the leading asymptotic
behaviors are EI;0 ¼ ðγ=2πÞ½logðωc=γÞ�2 and ES;0 ¼
−ðγ=2Þ lnðωc=γÞ, while Eexc;0 does not depend on ωc.
Hence, we have in the scaling regime EI;0≫ jES;0�≫Eexc;0,
and thus ĒRðtÞ≃ PRt − EI;0.
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To understand how the energy is dissipated into the
various channels, we plot in Fig. 1 a snapshot of ĒRðt̄Þ and
ĒIðt̄Þ at time t̄≡ 50=γ as functions of frequency ω and of
temperature T. The behavior of the reservoir channel is
particularly interesting as it shows a sequence of plateaus
combined with sudden ascents around ω ¼ ϵ0=n, n ¼ 1, 2,
3, 4. This resembles the driving-induced coherences (DICs)
and resonances inherent in strongly coupled system-
reservoir entities [28–31]. The resonances fade away into
the continuumwhen ϵ0 < ϵ1 is small [see inset in Fig. 1(a)],
or when the temperature is increased.
The behavior of ĒRðt̄Þ reflects the one of the power PR,

as depicted in the inset of Fig. 1(a). The solid curve,
reporting ĒRðt̄Þ, is effectively an amplification of the solid
curve in the inset, showing PR, by a factor 50=γ with a
displacement along the ordinate by roughly −EI;0. We see
that in a region around ω ¼ 2γ there holds ĒRðt̄Þ < 0; i.e.,
the energy EI;0 drained away into the interaction still
outstrips the amount PRt̄. Since ĒRðt̄Þ depends strongly
on ω and ϵ0, and ĒIðtÞ is virtually constant, the case, in
which the energy dissipated into the bath is small or large,
can easily be adjusted by tuning these external parameters.
The energies ĒRðt̄Þ and ĒIðt̄Þ are depicted versus

temperature in Fig. 1(b). While the latter depends weakly
on T, the energy deposited in the bath has a peaked
structure signifying that the respective energy is amplified

because of the noise. This reflects the quantum stochastic
resonance characteristics of the driven damped quantum
system [28]. Side resonances are absent because of the
relatively high temperatures. At low T, the curve for ĒRðt̄Þ
falls again below ĒIðt̄Þ.
Finally, we turn to the oscillatory part in Eq. (11). The

individual terms of the mth component represent the oscil-
latory energy exchange between the four entries of the
balance relation Eq. (7) at frequency mω. These features
can be observed with a detector having a time resolution
smaller than 2π=ω. The amplitudes of the m ¼ �1 compo-
nents are the largest ones. The absolute values of the
amplitudes ER;1 and EI;1 are depicted versus ω for a
particular parameter set in Fig. 2. The amplitudes show
distinct resonances at ω ¼ ϵ0=n with n ¼ 1, 2, and 3 which
are again related to the DIC. Since the phases of the
amplitudes differ by nearly π, as shown in the inset of
Fig. 2, and the absolute values are close, the major energy
transfer is between the bath and the interaction. The surplus
of energy put in and out of the reservoir oscillates with
amplitudeEexc;1 − ES;1, and the absolute value of it is just the
difference of the two curves in Fig. 2. This is small since the
leading contributions to Eexc;1 and ES;1 cancel each other.
For completeness, consider the asymptotic behaviors of

the various energy contributions in the scaling regime for
K ≠ 1

2
. For K < 1

2
, we obtain from Eq. (10) EI;0 ∝

lnðωc=ΔrÞ, while ES;0 and Eexc;0 are independent of ωc.
ForK > 1

2
, we get from Eq. (9) ES;0¼−cS;0Δrðωc=ΔrÞ2K−1,

and from Eq. (10) the same functional form, EI;0 ¼
cI;0Δrðωc=ΔrÞ2K−1 with the ratio cI;0=cS;0 ¼ 2πK=
sin½2πðK − 1

2
Þ�. Interestingly, this term is very large for

K slightly above 1
2
. Thus for K around 1

2
, we generally have

EI;0 ≫ jES;0j; Eexc;0. Hence the characteristic behaviors
depicted in Fig. 1 qualitatively hold for K near 1

2
.

However, the time at which the energy drained into the
bath exceeds the energy EI;0 drained into the interaction
may sensitively depend on whether K < 1

2
or K > 1

2
.

Finally, since all the oscillatory terms in Eq. (11) are
independent of ωc, the coefficients Ej;m, where j ¼ S; R; I,
and exc, smoothly vary with K near K ¼ 1

2
.

(b)

(a)

FIG. 1. A snapshot of ĒRðt̄Þ at time t̄≡ 50=γ (solid curve) and
ĒI (dashed curve) are plotted versus frequency ω in (a) and versus
temperature T in (b). The parameters are ϵ0 ¼ 10γ, ϵ1 ¼ 5γ,
ωc ¼ 5000γ, plus T ¼ 0.1γ in (a), and ω ¼ 5γ in (b). In the inset
the constant-in-time contribution to the power PR versus ω is
plotted for ϵ0 ¼ 2ϵ1 (solid blue line), ϵ0 ¼ ϵ1 (dashed green line),
and ϵ0 ¼ 0.4ϵ1 (dotted black line). The arrows denote the
positions of the ground and side frequencies in (a) and the
quantum stochastic resonance in (b).

FIG. 2. The absolute values of the amplitudes of the first
harmonic ER;1 (solid curve) and EI;1 (dashed curve) are plotted
versus driving frequency ω. The parameters are the same as in
Fig. 1(a). Both curves show resonances at ϵ0=n (indicated by the
arrows). Inset: phases of ER;1 (solid curve) and EI;1 (dashed
curve) versus ω. The two contributions are always in antiphase.
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Conclusions.—We presented a general method to analyze
the time-resolved energy transfer to the various dissipative
channels of a driven open quantum system strongly coupled
to a heat bath. The exact formal solution in path sum
representation was given in Eqs. (2) and (3). It may form
a firm basis for the implementation of efficient numerical
tools [43–47]. The method was applied to the spin-boson
model, with explicit results in the Ohmic scaling limit at
strong coupling, for the special case of K ¼ 1

2
. We showed

that the interaction channel is a relevant dissipative drain
which even may dominate in particular regimes of the
parameters. For harmonic driving, the energy flowing into
the reservoir shows distinct resonant behavior, thereby
reflecting quantum stochastic resonance features of the
model [28,29]. The findings may open new directions in
the study of energy transfer in complex quantum systems,
and pave the way to control energy dissipation into the
reservoir by tuning the system’s parameters.
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