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We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of
another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing
occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These
include both a repulsive direct interaction and an attractive effective interaction mediated by the Bose-
Einstein condensate. The occupation dependence of these two competing interactions drastically affects the
Hubbard model phase diagram, including causing the disappearance of some Mott lobes.
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Wherever vortices have been detected, there has been
interest in particles bound inside them. For example,
particles bound in the vortices of rotating superfluid helium
[1–4] were used to count [5] and visualize [6–8] vortices,
and determine their properties [9,10]. Meanwhile, bound
particle-antiparticle pairs in vortex lattices of clean type-II
superconductors [11] received theoretical [12–14] and
experimental [15] attention for their role in charge transport
[16] and relaxation.
In this Letter, we consider a vortex lattice of a rotating

atomic Bose-Einstein condensate (BEC) [17–21] in which a
small number of cold bosonic atoms, called impurities, are
bound. Imbalanced cold atomic mixtures have been used to
study the effect of the majority species on the transport of
the impurities [22–25], often with an external lattice poten-
tial [26–28], and the formation of polarons [29–31].
Reference [32] considered the continuum modes of impu-
rities immersed in a BEC vortex lattice, but not the regime in
which the bound modes of impurities are important.
For this regime, we develop a Hubbard model descrip-

tion for the impurities. To account for strong repulsive
interactions between impurities [33–42] and with bosons
comprising the BEC [43–46], we allow the wave functions
of particles at each site to depend on the number of
impurities at that site, leading to an occupation-dependent
Hubbard model [47]. Our system contrasts with typical
experiments featuring cold atoms in rigid optical lattices.
The soft vortex lattice makes the interaction of impurities
with lattice degrees of freedom intrinsic to the system,
similar to solid-state systems described by so-called
dynamical Hubbard models [48–52]. In our setup the range
of impurity-impurity interactions induced by this softness is

restricted by the healing length ξ [30]. In contrast, soft weak
optical lattice potentials, e.g., created by driven cavities
[53,54], induce longer-ranged interactions and noise [55],
qualitatively different from our proposal.
We focus on the on-site interactions between impurities,

which govern the strongly interacting part of the phase
diagram. We find that the occupation dependence, in
conjunction with competition between direct repulsive
impurity-impurity interactions and effective attractive inter-
actions mediated by the BEC [29,30], drastically alters the
typical structure of the ground state phase diagram. We give
an example in which low-occupation Mott lobes are
missing entirely.
System.—Our system consists of a cold atomic mixture

of two bosonic species s ¼ a, b, which we call impurities
and bosons, respectively. They have mass ms and rotate
with frequency Ω around the z axis. Both species are
trapped sufficiently strongly along the z axis that the
system is governed by the two-dimensional Hamiltonian
Ĥ ¼ P

s¼a;bĤs þ Ĥab. For each species, in the rotating
frame, we have [21]

Ĥs ¼
Z

drΨ̂†
sðrÞ

�
hsðrÞ þ

gs
2
Ψ̂†

sðrÞΨ̂sðrÞ
�
Ψ̂sðrÞ

with the single-particle Hamiltonian

hsðrÞ ¼ −
ℏ2∇2

2ms
þ VsðrÞ þΩLzðrÞ;

creation Ψ̂†
sðrÞ and annihilation Ψ̂sðrÞ field operators,

LzðrÞ ¼ −iℏ∂=∂ϕ for the z-axis angular momentum,
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position vector r orthogonal to the z axis, and azimuthal
angle ϕ. The repulsive density-density intra- and interspe-
cies interactions have strengths gs and gab, respectively.
Accordingly, the interspecies interaction Hamiltonian is

Ĥab ¼ gab

Z
drΨ̂†

aðrÞΨ̂aðrÞΨ̂†
bðrÞΨ̂bðrÞ:

The relationship between the parameters of this effective
two-dimensional system and those of the original three-
dimensional system are given in Sec. I of the Supplemental
Material [56].
For isotropic harmonic potentials VsðrÞ ¼ msΩ2

sr2=2,
the single-particle Hamiltonians can be rewritten

hsðrÞ ¼
Π2

s

2ms
þms

2
ðΩ2

s −Ω2Þr2

with covariant momenta Πs ¼ −iℏ∇þmsAðrÞ and vector
potential A ¼ −Ωr × ẑ (symmetric gauge). We choose
Ω≲Ωs, ensuring the system is trapped but nevertheless
approximately homogeneous, hsðrÞ ≈ Π2

s=2ms, in the bulk.
Vortex lattice.—We use a Gross-Pitaevskii mean-field

treatment in which, at low temperatures, the Nb bosons
form a BEC with wave function ψf0gðrÞ. The result, found
using the normalized gradient flow method via backward
Euler Fourier pseudospectral discretization [57–59], is
shown in Fig. 1(a). We consider the regime of large Ω,
in which the condensate exhibits singly quantized vortices
whose centers R form an equilateral triangular lattice with
nearest-neighbor distance a ¼ ð2πℏ= ffiffiffi

3
p

mbΩÞ1=2 [21]. In
the bulk of the condensate, the density nf0gðrÞ ¼
Nbjψf0gðrÞj2 of the bosons provides the impurities with
a periodic potential Vf0g

ab ðrÞ ¼ gabnf0gðrÞ with the same
geometry as the vortex lattice. The vortex cores have a
width of the order of the healing length ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbn0mb

p

and depth gabn0, where n0 is the density of bosons away
from the vortex cores. Unlike typical optical lattice poten-
tials, the width ξ, depth gabn0, and separation a of potential
wells can be controlled separately and are not limited by
optical wavelengths. We consider large rotation energies on
the order of interaction energies ℏΩ≲ n0gb=2, so that the
widths of the wells are similar to their separations ξ≲ a,
and bosonic densities of roughly ten bosons per vortex,
large enough that the mean-field Gross-Pitaevskii descrip-
tion holds [60,61].
Hubbard physics.—The impurities, a minority species

Na < Nb, are immersed in the vortex lattice. For large
enough gab or ma, the impurities occupy bound localized
states inside the potential wells of the vortex lattice. An
example of this is shown in Fig. 1(b). A simple calculation
for a Gaussian impurity in a finite circular well of width ξ
and depth gabn0 gives an approximate condition gab=gb >
mb=2ma for localization.
It follows that the low-energy dynamics of impurities

consists of hopping between the bound states at vortex
lattice sites, with many-body effects accounted for by the
energy cost of impurities sharing the same site. A minimal
physical description of such a system is illustrated in
Fig. 1(c) and corresponds mathematically to a single-band
Hubbard model with occupation-dependent parameters [47]

ĤHubbard¼Ef0gþ
X

R

ϵfn̂Rgn̂Rþ
X

hR0Ri
â†R0J

fn̂R0 n̂Rg
R0R âR: ð1Þ

Here, we introduced bosonic creation, annihilation, and
number operators â†R, âR, and n̂R ¼ â†RâR for site R.
We have assumed that the effects of impurities at each site
are sufficiently localized that impurities at different sites
contribute to separate terms in energy Ef0g þP

Rϵ
fnRgnR;

i.e., long-distance interactions are negligible. We expand the

FIG. 1. Hubbard description of atoms trapped in a vortex lattice. (a) The density Nbjψf0gðrÞj2 of a harmonically trapped and rotating
BEC. Inset: the phase structure of the central vortex. (b) The BEC Nbjψf1gðrÞj2 (top left) and impurity jwf1gðrÞj2 (top right) densities for
a single impurity localized in the central vortex. Bottom: the x-axis cross section of these densities, together with the unperturbed
BEC density Nbjψf0gðrÞj2 (dashed line). The parameters for (a) and (b) are Nb ¼ 500, Ω=Ωb ¼ 0.98, mbgb=ℏ2 ¼ 1, mb=ma ¼ 1,
ga=gb ¼ 1.1, and gab=gb ¼ 6. Quantities are expressed in terms of the characteristic length a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mbΩb

p
of the trap.

(c) An illustration of the Hubbard physics. Impurities at the vortex site R are described by the wave function wfnRg
R ðrÞ that, along

with the deformation of the BEC wave function jψðrÞj in the vicinity of R, is dependent on the occupation nR. This leads to an

occupation-dependent energy ϵfnRg per impurity at the site and an occupation-dependent hopping energy JfnR0nRg
R0R between sites. (d) The

Mott lobes (shaded regions) of the Hubbard phase diagram over different chemical potentials μa and hopping energies jJj of the
impurities, found within the Gutzwiller ansatz [62]. If ϵfng increases monotonically then all Mott lobes exist; otherwise, some are
missing. Here, we show both cases, corresponding to ga=gb ¼ 1.5 and gab=gb ¼ 3 (left), and ga=gb ¼ 1.1 and gab=gb ¼ 6 (right). The
other parameters are Nb ¼ 10, mbgb=ℏ2 ¼ 1, and mb=ma ¼ 1.
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energy per impurity ϵfng ¼ ϵf1g þ Ufngðn − 1Þ=2 to define
an effective single-impurity energy ϵf1g and two-body
interaction energy Ufng. A dependence of the interaction
energy Ufng on the occupation n, often interpreted as
effective three- or higher-body interactions [34], occurs
when strong interactions affect the bound states of multiple
impurities at a site [33–42]. Similar reasoning, applied to the
hopping of particles, leads us to restrict hopping to between
nearest neighbors, denoted by the angled brackets in Eq. (1),

and implies that the hopping energy JfnR0nRg
R;R0 depends on the

occupations of the sites involved.
The Hubbard model also accounts for the deformation of

the BEC due to interactions with impurities [43–46]. This
leads to self-trapping, where an impurity widens the vortex
in which it is localized, increasing the attractiveness of the
potential well for itself, lowering ϵf1g, and other impurities,
providing an effective negative contribution to the inter-
action energy Ufng [63]. Here, we assume the hopping

JfnR0nRg
R0R is slow, allowing a simple treatment in which BEC

deformations follow impurities instantaneously. Thus, for
each possible configuration σ ¼ ðnR; nR0 ; nR00 ;…Þ of the
impurity occupations nR of the vortex cores, there is a
single low-energy state jσi of the system. Together these
span the system’s low-energy Hilbert space. Equation (1),
governing the dynamics in this low-energy space, then
describes polarons, quasiparticles comprising impurities
and the associated vortex deformations [29–31].
We construct state jσi in two steps. We first write it as a

product jσi ¼ jσ; aijσ; bi, where the state jσ; ai of the
impurities is approximately a symmetrized product of nR
impurities occupying a, potentially occupation-dependent,

wave function wfnRg
R ðrÞ centered at each site R. Then,

the corresponding bosonic state jσ;bi is taken to be the
ground state of the reduced bosonic Hamiltonian ĤbðσÞ ¼
hσ; ajĤjσ; ai. The appropriate wave functions wfnRg

R ðrÞ,
and thus jσ; ai, are found self-consistently with the
deformed BEC, and thus jσ; bi, by minimizing the total
energy. For the regimes considered only a single minimum
in the energy was observed. The parameters ϵfng and
JfnR0nRg
R0R of the Hubbard Hamiltonian ĤHubbard [Eq. (1)]

are then chosen such that they reproduce the action of
the original Hamiltonian in this low-energy subspace
hσ0jĤHubbardjσi ¼ hσ0jĤjσi. For calculation details, see
Secs. II and III of the Supplemental Material [56].
Weak interactions.—We first consider the limit in which,

due to weak interactions, impurities and deformations of
the vortex lattice do not affect each other [29]. In this case,
the correct impurity wave functions are the localized
lowest-band Wannier modes wRðrÞ for the vortex lattice

potential Vf0g
ab ðrÞ formed by the unperturbed condensate

ψf0gðrÞ. Note that the Wannier modes do not depend on
occupation. We then calculate jσ; bi within a Bogoliubov
approximation of the BEC. Specifically, we write

Ψ̂bðrÞ ¼
ffiffiffiffiffiffi
Nb

p
ψf0gðrÞ þ δΨ̂bðrÞ with the deformation

δΨ̂bðrÞ ¼
P

k½ukðrÞb̂k þ v�kðrÞb̂†k� expressed in terms of
bosonic operators b̂†k and b̂k, and ukðrÞ and vkðrÞ
satisfying the Bogoliubov–de Gennes equations for mode
energies ℏωk [64]. Including terms up to second order in
δΨ̂bðrÞ and gab, and neglecting hopping induced by
impurity-impurity interactions, we obtain the reduced
bosonic Hamiltonian

ĤbðσÞ¼Eb½ψf0g�þ
X

k

ℏωkb̂
†
kb̂kþgab

X

k

ðfkb̂kþf�kb̂
†
kÞ

with fk ¼ P
RnRfkR, fkR ¼ R

drjwRðrÞj2fkðrÞ, and
fkðrÞ ¼

ffiffiffiffiffiffi
Nb

p ½ukðrÞψf0g�ðrÞ þ vkðrÞψf0gðrÞ�. The con-
stant Eb½ψf0g� is the energy of the unperturbed condensate.
The ground state of ĤbðσÞ is the displaced phonon vacuum
jσ; bi ¼ Q

RðX̂†
RÞnR j0i, where X̂†

R ¼ exp½Pkðα�kRb̂†k −
αkRb̂kÞ� is a Glauber displacement operator with
αkR ¼ −gabfkR=ℏωk.
We then find (see Sec. II of the Supplemental Material

[56]) the parameters of the Hubbard Hamiltonian ĤHubbard
[Eq. (1)] to be the following. The zero energy is
Ef0g ¼ Eb½ψf0g�, while the on-site energy per impurity

ϵf1g ¼ ε − V consists of the contribution ε ¼R
drw�

RðrÞ½haðrÞ þ Vf0g
ab ðrÞ�wRðrÞ from an impurity in

the unperturbed potential, reduced by an energy V ¼
g2ab

P
kj
R
drjwRðrÞj2fkðrÞj2=ℏωk due to self-trapping

via BEC deformation. The two-particle interaction
U ¼ u − 2V consists of the usual contribution u ¼
ga

R
drjwRðrÞj4 for the impurity reduced by twice

the self-trapping energy V. The hopping JR0R ¼
h0jX̂R0X̂†

Rj0ijR0R is reduced from the bare impurity

hopping jR0R ¼ R
drw�

R0 ðrÞ½haðrÞ þ Vf0g
ab ðrÞ�wRðrÞ by a

renormalization factor h0jX̂R0X̂†
Rj0i resulting again

from BEC deformation. The polaron creation and annihi-
lation operators are simply expressed as â†R ¼
ðR drwRðrÞΨ̂†

aðrÞÞX̂†
R and its conjugate; i.e., a polaron

consists of an impurity with the Wannier function wRðrÞ
dressed with a corresponding displacement X̂†

R of the
BEC [29].
This calculation finds the competing contributions of

both the direct interaction u and self-trapping V to be
occupation independent. Thus, the energy per impurity ϵfng
exhibits only two possible behaviors: monotonically
decreasing with n (attractive U < 0), in which no Mott
phases exist, or monotonically increasing with n (repulsive
U > 0), leading to the usual Mott phase diagram, as on the
left of Fig. 1(d). Treating the deformation of the BEC in a
Thomas-Fermi approximation [25], we find the approxi-
mate condition gab >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gagb=2

p
for the onset of negativeU.

Strong interactions.—In this regime, the state of multiple
impurities localized at the same site can no longer be
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described in terms of the lowest-band Wannier functions
wRðrÞ. To account for the effect of higher bands in our
single-band model, we thus require occupation-dependent
wave functions wfnRg

R ðrÞ to describe the impurities at each
site R [38,65–67]. Similarly, to describe the condensate in
the vicinity of the site, we use an occupation-dependent

wave function ψfnRg
R ðrÞ. The self-consistent wave functions

wfnRg
R ðrÞ and ψfnRg

R ðrÞ that optimally describe the low-
energy manifold are those that simultaneously minimize the
energy at the site. Omitting the site label, the energy
functional to minimize is (see Sec. III of the Supplemental
Material [56])

Ef0g þ ϵfngn ¼ n
Z

drwfng�ðrÞhaðrÞwfngðrÞ

þ ganðn − 1Þ
2

Z
drjwfngðrÞj4

þ Nb

Z
drψfng�ðrÞhbðrÞψfngðrÞ

þ gb
2
N2

b

Z
drjψfngðrÞj4

þ nNbgab

Z
drjwfngðrÞj2jψfngðrÞj2;

for each n, with Ef0g and ϵfng determined from the energies
at the minima.
We perform the energy minimization over the unit cell

corresponding to some site R in the bulk, approximating it
by a circular region of radius l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mbΩ
p

and area equal
to that of the unit cell (see Sec. IV of the Supplemental
Material [56]). We fix the number Nb of bosons in a unit cell
and use a Crank-Nicolson finite-difference approach [68].
We account for the BEC rotation and trapping by making
two assumptions: first, that the BEC wave function has a
simple angular dependence ψfngðrÞ ¼ eiϕψfngðrÞ inside the
unit cell [Fig. 1(a)]; second, that the wave function ψfngðrÞ
takes its maximum value at the boundary of the cell
[Fig. 1(b)]. We also assume no angular dependence for
the impurity wave function wfngðrÞ ¼ wfngðrÞ.
The results are shown in Fig. 2. In Fig. 2(a) we observe

the widening of both the impurity wave function and vortex

core due to strong interactions. In Figs. 2(b) and 2(c) we
plot the occupation dependence of the energy per impurity
ϵfng for varying intra- and interspecies interaction strengths
ga and gab. We see that the competing effects of direct
repulsive interactions and attractive mediated interactions
are separately occupation dependent. Specifically, the
effect of self-trapping decreases quickly with occupation
due to the reduced effect of an impurity on a vortex core
that has already been widened. Direct interactions, mean-
while, remain important for larger n. Thus, we find regimes
in which Ufng is initially negative and then positive, and
ϵfng is nonmonotonic, first decreasing then increasing.
This corresponds to unusual behavior in the phase

diagram, which we calculate within the Gutzwiller ansatz
[62] for two sets of parameters, assuming the hopping
to have a constant magnitude jJj (see Sec. V of the
Supplemental Material [56]). The Mott lobes, up to
n ¼ 3, are shown in Fig. 1(d). We see that as the strength
of impurity-BEC interactions gab increases relative to
impurity-impurity interactions ga, the n ¼ 1 Mott lobe
disappears completely.
Hopping.—While the chemical potential μa of the impu-

rity can be controlled independently, the magnitude jJj of the
hopping depends on the other parameters. Here, we estimate
the magnitude jJj, demonstrating that we are in the region of
the phase diagram containing the Mott lobes and validating
our earlier assumption of slow hopping. We take two of the
previously calculated single-impurity wave functions
wf1g
R ðrÞ, located at neighboring sites R and R0, orthogon-

alize them (see Sec. VI of the Supplemental Material [56]),
and calculate the bare hopping using the unperturbed

potential jR0R ¼ R
drwf1g�

R0 ðrÞ½haðrÞ þ Vf0g
ab ðrÞ�wf1g

R ðrÞ.
For the parameters Nb ¼ 10, mbgb=ℏ2 ¼ 1, mb=ma ¼ 1,
and gab=gb ¼ 6, corresponding to the missing Mott lobe, we

find jjR0Rj ¼ 7.4 × 10−3ℏΩ. The true magnitude jJfnR0nRg
R0R j

of the hopping energies will be renormalized to a signifi-
cantly smaller value than this due to deformations of the
BEC. Hopping is thus the smallest energy scale in our
system, 1 order of magnitude below Ufng.
Discussion.—We have shown that it is possible to trap

cold atomic impurities in the vortex lattice formed by

FIG. 2. Strong coupling. (a) The BEC wave function jψfngðrÞj, normalized over the unit cell 0 ≤ r ≤ l, and the impurity wave
function wfngðrÞ, normalized over all space, for different numbers of impurities n. The energy per impurity ϵfng, for different n, as
(b) ηa ¼ ga=gb and (c) ηab ¼ gab=gb is varied. Crosses mark data points and lines guide the eye. Unless stated otherwise, Nb ¼ 10 is the
number of bosons per unit cell, mbgb=ℏ2 ¼ 1, mb=ma ¼ 1, ga=gb ¼ 1.1, and gab=gb ¼ 6.
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rotating bosons of another species, have described their
motion by a Hubbard model, and have shown that the Mott
lobes of the resulting phase diagram have unusual features.
Such features, including missing Mott lobes, can be
observed in experiment, inferred from time-of-flight im-
aging [69,70] since the lattice parameter a is smaller than
the wavelength of light. To confirm the feasibility of this,
note that the energy scale of the system is determined by the
rotation and trapping frequencies Ω ≈ Ωs, which can be on
the order of 100 Hz in magnetic traps and 1 kHz in dipole
traps. For example, Ω=2π ¼ 3 kHz is equivalent to
ℏΩ=kB ¼ 150 nK. The temperature needs to be less than
0.2ℏΩ=kB ¼ 30 nK to distinguish the Mott lobes, as is
evident from Fig. 1(d), which is experimentally achievable.
We note that our calculations neglect correlations between
particles at the same site, which for strong interactions may
lead to a significant reduction in the on-site energies [39]
and enhance the occupation-dependent interaction effects.
As well as the strongly interacting region of the phase

diagram and the Mott lobes on which we have focused,
strong interactions significantly affect other phases, includ-
ing inducing a superfluid of paired impurities [38]. Indeed,
for highly mobile impurities effects such as bistability and
hysteresis may arise. Moreover, the interplay of incoherent
polaronic effects, e.g., motional dephasing [28–30], and
vortices is an interesting prospect for future work. While we
have focused on bosonic impurities, fermions could also be
considered in the same framework where novel vortex
induced pairing effects are expected to arise.
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