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The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules
has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant
coupling of a cavity field with an electronic transition can effectively decouple collective electronic and
nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency
quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling
can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can
be orders of magnitude larger than in free space for a wide class of organic molecular species.
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The experimental realization of the strong [1–9] and
ultrastrong [10–15] coupling regimes of cavity quantum
electrodynamics (QED) with organic matter in optical
cavities has stimulated interest in the development of
hybrid quantum devices with enhanced energy and electron
transport properties [16–19], tunable nonlinear optical
response [20], and novel optomechanics [21]. The strong
resonant coupling between a cavity mode and electronic
[22,23] or vibrational [24–27] molecular transitions is well
known to result in polariton formation [23,28–32].
Recent experiments have shown the potential of cavity

fields to alter chemical reactivity by manipulation of the
reaction energy landscape [33], although the role of the
coupling between nuclear and electronic degrees of freedom
in an optical cavity is still not well understood. This topic has
only recently been addressed for molecular aggregates [34]
and single molecules [35]. Understanding the role that a
cavity field can play in altering electron-vibration dynamics
would help in developing tools for controlling a broad range
of chemical reactions using cavity QED.
In this Letter, we show that the strong collective interaction

of a molecular ensemble with the vacuum field of an optical
cavity can, in fact, modify the nuclear dynamics of individual
molecules in the ensemble. In free space, when an electron
is optically excited, the nuclei in a molecule rearrange to a
configuration that minimizes the electronic energy in the
excited state. The excited nuclear configuration is typically
different from the ground state equilibrium configuration.We
find that in an optical cavity that can exchange energy with a
collective electronic state faster than the timescales associated
with nuclear motions, reorganization of the nuclei upon
excitation is strongly suppressed. This effect is a type of
polaron decoupling involving collective electronic degrees
of freedom that are symmetric with respect to molecular
permutations. Polaron decoupling can be understood
as an extension of the concept of cavity-induced motional
narrowing [36] to vibronic interactions and resembles phe-
nomena found in the nuclear dynamics ofmolecular junctions

[37–40]. We show that the decoupling mechanism is robust
with respect to energetic disorder in molecular ensembles.
The effective manipulation of intramolecular nuclear dyn-

amics can be used to control chemical reactivity, for example,
by controlling the reorganization energy in Marcus electron
transfer reactions [41]. In order to illustrate this possibility,
we show that strong cavity-matter coupling can significantly
enhance the rate of intramolecular electron transfer (ET)
reactions within individual molecules in the ensemble.
Polyatomic molecules with z atoms have 3z − 6 normal

modes of vibration, eachmode involving the coupledmotion
of multiple atoms within a molecule. Often, only a few of
these modes are needed to describe a chemical reaction [42].
These are known as the reaction coordinates (RCs) asso-
ciated with a mass-weighted superposition of the form
qk ¼

P
iαik

ffiffiffiffiffiffi
mi

p
xi, where k is a mode index, and xi is the

displacement of the ith atom from the potential minimum.
Each atomic displacement has a mass-weighted momentum
pi=

ffiffiffiffiffiffi
mi

p
. For a single reaction coordinate q in the harmonic

approximation for the potential, we can represent the ground
state energy as HgðqÞ ¼ ðp2 þ ω2

vq2Þ=2, where ωv is the
frequencyof the intramolecular vibration, andp is the normal
mode momentum. The nuclei have a reference equilibrium
configurationq0 ¼ 0 in the ground state jgi. The equilibrium
nuclear configuration in an excited electronic state is,
however, different from the ground state configuration.
This difference is a manifestation of electron-vibration
coupling, or vibronic coupling. In the harmonic approxima-
tion, the nuclear potential in an excited state jei is given by

HeðqÞ ¼ ωe þ
1

2
½p2 þ ω2

vðq − qðeÞ0 Þ2�; ð1Þ

whereωe is the electronic energy, andq
ðeÞ
0 is a state-dependent

shift that quantifies the degree of vibronic coupling. We set
ℏ ¼ 1 throughout and assume that the vibrational frequency
is the same in all electronic states. In Fig. 1(a), we show the
nuclear potentials for a molecule with a ground state jgi
centered at q0 ¼ 0, as well as excited states jei and jfi
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centered on opposite sides of the ground stateminimum. This
nuclear arrangement is relevant to describe electron transfer
in substituted biphenyls [43,44], where the RC represents a
torsional angle between the electron donor and acceptor
groups. In Fig. 1(a), we also represent a quantized cavity
mode â that induces Rabi oscillations between states jgi and
jei at frequency Ωe with detuning jΔej ≪ Ωe.

Shifted vibrational modes ~̂b for state jei can be obtained
from the unshifted ground state oscillator mode b by a

displacement along the RC so that ~̂b ¼ b̂þ λe [45]. A
similar definition holds for state jfi. The dimensionless

Huang-Rhys factor λ2e ≡ ðωv=2Þ½qðeÞ0 �2 characterizes the
strength of vibronic coupling. The vibrational eigenstates
of the shifted harmonic potential are denoted by
j ~mei≡D†ðλeÞjmi, where DðλeÞ ¼ exp½λeðb̂† − b̂Þ� is the
nuclear displacement operator, and jmi is a vibrational
eigenstate for the reference mode b̂.
We are interested in the dynamics of an ensemble of N

identical molecules interacting with a single quantized
electromagnetic mode of an optical cavity having annihi-
lation operator â. The many-body Hamiltonian for the
ensemble can be written in the interaction picture as

HN ¼ ωv

X
ν

b̂†νb̂ν þ Δ
X
α

jαihαj þ
X
αβν

gναβb̂νjαihβj þ H.c.

þ
ffiffiffiffi
N

p �
Ωe

2

�
ðjα0ihGjâþ jGihα0jâ†Þ; ð2Þ

where jGi ¼ jg1; g2;…; gNi is the ensemble ground state,
jαi ¼ P

iuαijeii are one-excitation states, and b̂†ν ¼P
icνib̂

†
i creates a phonon in mode ν. The detuning from

the cavity frequency ωcav is Δ ¼ Δe þ ωvλ
2
e, with Δe ¼

ωe − ωcav being the detuning from the zero-phonon line
(0-0) transition, and Ωe is the single-molecule Rabi fre-
quency. We assume that jΔej=Ωe ≪ 1. Other excited states
[for example, jfi in Fig. 1(a)] are far detuned or weakly
coupled to the cavity field and cannot exchange energy with
the confined mode over the time scales of interest.
The electron-vibration coupling constant in Eq. (2) is

given by gναβ ¼ λeωv
P

iu
�
αicνiuβi. By defining the ν ¼ 0

phonon mode to be totally symmetric with respect to
particle permutations, i.e., c0i ¼ N−1=2, we have gν¼0

αβ ¼
δα;βλeωv=

ffiffiffiffi
N

p
. In other words, the permutation-symmetric

phonon mode does not couple different collective elec-
tronic states.
We refer toHamiltonianHN in Eq. (2) as aHolstein-Tavis-

Cummings (HTC) model. It extends the model used in
Ref. [35] to treat many particles with quantized molecular
vibrations. In free space, we can setΩe → 0 andΔe → ωe to
recover a standard Holstein model with optical phonons
[46], which is used to describe small polaron dynamics
[45–47]. It is straightforward to generalize Eq. (2) to include
direct long-range interactions between molecules and ener-
getic disorder. For an ensemble with translational symmetry
in a lattice, we identify the mode indices α and ν with the
quasimomentak and q of electronic and phonon excitations,
respectively. We use this (k, q) lattice representation below
for numerical diagonalization of Eq. (2).
The cavity field profile is assumed to be constant over the

volume occupied by the molecular ensemble. Therefore, the
cavity mode can exchange energy efficiently only with the
permutation-symmetric electronic state jα0i ¼

P
ijeii=

ffiffiffiffi
N

p
[second line of Eq. (2)], with a size-enhancedRabi frequencyffiffiffiffi
N

p
Ωe. We show in the Supplemental Material [48] that we

can exploit the selection of permutation-symmetric elec-
tronic states by the cavity to partition the electronic Hilbert
space into a symmetric subspace P ¼ jGihGj þ jα0ihα0j
and a nonsymmetric manifoldQ ¼ 1N − P, where 1N is the
many-body identity. Equation (2) can be projected into these
orthogonal manifolds to give

HN ¼ P†HNP þQ†HNQþ P†HNQþ H:c: ð3Þ
The specific forms for each term in Eq. (3) are given in the
Supplemental Material [48].
Electron-vibration coupling in the P manifold involves

only the symmetric phonon (ν ¼ 0) with coupling constant
gν¼0
α0α0 ¼ λeωv=

ffiffiffiffi
N

p
. Vibronic coupling in the symmetric

mode is suppressed by a factor of 1=
ffiffiffiffi
N

p
with respect to

single-molecule vibronic coupling, leading to an effective
shift of the potential minima in excited state jei in Fig. 1(a)
towards the ground state minimum [34]. A similar idea
could be used to interpret the single-molecule absorption

(a) (b) 

FIG. 1. (a) Nuclear potentials for a single molecule along the
reaction coordinate q. Excited states jei and jfi are shifted with

respect to the ground state by qðeÞ0 and qðfÞ0 in free space. A cavity
field â couples to the transition jgi↔jei with a detuning Δe and
Rabi frequency Ωe. For large enough Ωe, the cavity effectively
shifts the potential minimum in state jei to coincide with jgi (right
gray arrow). State jfi does not couple to the cavity. (b) Cavity-
dressed spectrum for an ensemble of N molecules with vibronic
coupling showing the splitting of the permutation-symmetric
collective dressed states j�; ~mi from the cavity-free polaron
eigenstates QjΨNi. ωv is the vibrational frequency.
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spectra computed in Ref. [35]. In the Supplemental
Material [48], we provide an equivalent derivation of the
cavity-induced reduction of the Huang-Rhys factor for
lattice vibrations using phonon modes in the site basis b̂i.
We choose the collective phonon basis b̂ν here to make a
clear connection with lattice systems that are relevant to
describe molecular aggregates [20,34].
The permutation-symmetric electronic partition P†HNP

can be diagonalized to obtain dressed vibronic states of the
form

j�; ~m;fmgν0 i ¼ jψ�i⊗ D̂†ðλe=2
ffiffiffiffi
N

p
Þjmi⊗ jfmgν0 i; ð4Þ

where jψ�i ¼ fjGijncav ¼ 1i � jα0ijncav ¼ 0ig= ffiffiffi
2

p
is the

dressed state in the absence of vibrations. We have assumed
that Δ ¼ 0 and

ffiffiffiffi
N

p
Ωe ≫ ωv. jncavi is a Fock state of the

cavity mode, which we restrict here to ncav ≤ 1 to study
cavity-vacuum effects only. State jmi is a vibrational
eigenstate of the symmetric phonon mode b̂ν¼0 and
jfmgν0 i≡ jmν¼1;…; mν¼N−1i describes the vibrational
state in nonsymmetric phonon modes. Dressed states in
Eq. (4) have energies given by

ω�; ~m;fmgν0 ¼ �
ffiffiffiffi
N

p
Ωe=2þ ωv ~mþ ωv

X
ν0≠0

mν0 ; ð5Þ

where terms of order 1=N have been ignored. We illustrate
the spectrum of the many-body Hamiltonian HN in
Fig. 1(b). We show in the Supplemental Material [48] that
as long as

ffiffiffiffi
N

p
Ωe ≫ ωv, the coupling between the P andQ

manifolds through phonon absorption or emission becomes
strongly suppressed. In this regime, the many-body states
given in Eq. (4) become eigenstates of the HTC model with
energies given by Eq. (5). We show below that polaron
decoupling can have a significant impact on the chemical
reactivity of molecular ensembles in optical cavities.
We illustrate the phenomenon of polaron decoupling in

Fig. 2. We quantify the degree of vibronic decoupling in the
eigenstates of the HTC model by the squared overlap
P0 ≡ jhΦ0jψ−;m ¼ 0ijf0gν0 iij2, where jΦ0i is the lowest
polariton eigenstate of HN for a resonant cavity (Δ ¼ 0),
and jψ−ijm ¼ 0ijf0gν0 i is defined in Eq. (4) for λe ¼ 0. As
we mentioned above, periodic boundary conditions are
used to represent collective electronic and vibrational states
including up to six vibrational quanta in the symmetric
mode b̂0 and up to two in the nonsymmetric modes
b̂ν≠0. We find that the squared overlap satisfies P0 ≤
exp½−λ2e=4N� (see the Supplemental Material [48] for a
derivation). The upper bound corresponds an effective
Franck-Condon overlap with the Huang-Rhys factor
λ2e=4N between the collective nuclear states in state jα0i
and those in state jGi. This overlap becomes exponentially
close to unity in the limit N ≫ λ2e. The nuclear configu-
ration of the collective excited electronic state jα0i is, thus,
the same as the ground state equilibrium configuration, for
all phonon modes ν. In other words, when the collective

Rabi oscillation period is shorter than the time scales
for vibrational motion, the electron can exchange energy
with the cavity mode many times before the nuclei have
time to reorganize their configuration to the excited state
potential. In practice, it may be challenging to reach this
regime [49], although Rabi oscillation periods as fast as
5.9 fs (

ffiffiffiffi
N

p
Ωe ¼ 700 meV) have been reported [10].

We now go beyond the restriction of identical molecules
and consider an excited state energy ωeðriÞ that depends
on the position of the molecule ri in the ensemble. This
type of static disorder in organic systems is typically taken
into account by assuming that ωeðriÞ has a Gaussian
distribution with standard deviation σ [34,50]. For a linear
array with N ¼ 10 molecules, we show in Fig. 2(b) that
the lowest eigenstate jΦ0i of the HTC Hamiltonian HN
with random detunings ΔeðriÞ is accurately given by
j−; ~0; f0gν0 i as the collective Rabi frequency exceeds the
disorder strength (

ffiffiffiffi
N

p
Ωe ≫ σ). In this limit, the upper

bound for P0 becomes tight for all disorder realizations, as
observed by the narrowing of the distribution in Fig. 2(b).
Having described polaron decoupling by energetic iso-

lation of the permutation-symmetric P manifold, we now
consider its effect on nonadiabatic unimolecular ET reac-
tions. In ET reactions, an excess electron is transferred from
a donor (D) to an acceptor (A) group within a molecule.
The coherent transfer rate V is proportional to the orbital
overlap between the D and A groups [41,45]. For non-
adiabatic ET reactions, we have V=ℏ ≪ ωv.
The relative energy between donor and acceptor

vibronic levels ΔE≡ ωDA þ ðmD −mAÞωv is known as
the driving force of an ET reaction [45]. ωDA ¼ ωD − ωA
is the electronic transition frequency and ðmD −mAÞωv
the vibrational transition frequency for the D-A pair. The
reaction rate can be written using linear response theory
as [45] (ℏ ¼ 1)

FIG. 2. Cavity-induced polaron decoupling. (a) Probability P0

for the lowest many-body dressed state to be decoupled from
molecular vibrations, as a function of the number of molecules N
in a linear lattice. Several values of the Rabi frequency are shown:
Ωe=ωv ¼ 4 (curve a) and Ωe=ωv ¼ 2 (curve b). ωv is the
vibrational frequency. (b) P0 as a function of Ωe=σ for a linear
array of size N ¼ 10 and disorder width σ. 2500 disorder
realizations are included in the shaded area. Dashed lines in
both panels correspond to P0 ¼ exp½−λ2e=4N�, with λ2e ¼ 1.
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kETðΔEÞ ¼ 2πV2
X
mD

X
mA

ηmD
ðTÞDðΔEÞ; ð6Þ

where ηmD
ðTÞ is the Boltzmann distribution of nuclear

states in the donor manifold jmDi at temperature T, and
DðΔEÞ is a Franck-Condon weighted line shape function,
whose specific form depends on the model assumed for the
system-environment interaction and the relative donor-
acceptor shift λDA ≡ λD − λA. For a closed system, we
have DðΔEÞ ¼ jhmDjmAij2δðΔEÞ, which gives the Fermi
golden rule. We are interested in high-frequency internal
vibrations for which kBT=ℏωv ≪ 1 at room temperature. In
this case, ET reactions occur through nuclear tunneling, and
the rate is strongly suppressed away from the resonance
condition ΔE ¼ 0 [45].
We consider a cavity-driven ET reaction in an ensemble

of N donor-acceptor complexes. The state jei from Fig. 1
takes the role of the donor and state jfi becomes
the acceptor. Outside the cavity, the ET reaction channel
jei → jfi is strongly suppressed when ΔE is away from a
vibrational resonance between the donor and acceptor
potentials. Inside the cavity, a confined photon can
exchange energy resonantly with the transition jgi↔jei
at frequency Ωe, which delocalizes the donor state over the
ensemble. On the other hand, the acceptor state jfi is
assumed to have a weak transition dipole with jgi and is far
detuned to the blue of the cavity frequency. The acceptor
wave function, thus, remains localized in each molecule.
For

ffiffiffiffi
N

p
Ωe ≫ ωv, the donor states undergo polaron decou-

pling and can be represented by Eq. (4). For a vibrational
frequency ωv ≈ 0.1 eV along the reaction coordinate,
significant polaron decoupling can be expected for exper-
imentally accessible Rabi frequencies of 0.2–0.6 eV. For a
cavity with at most one confined photon, the polariton
energies involved are far below typical molecular ioniza-
tion thresholds [51].
We can open the ET reaction channel jei → jfi by

Rabi splitting the energy of the upper dressed donor state
jþ; ~0; f0gν0 i above the acceptor level. ωD ¼ ffiffiffiffi

N
p

Ωe=2 is
the donor electronic energy in a frame rotating at the cavity
frequency ωcav. An electron placed in the dressed donor
state jþ; ~0; f0gν0 i by an electron beam or a weak laser
probe far detuned from the cavity mode frequency is,
thus, transferred via resonant tunneling to an acceptor
state jfi at the rate kETðΔEÞ, where ΔE is smaller than
the vibrational linewidth ℏγv. In an optical cavity, the rate
expression in Eq. (6) is still valid for this process, but
the line shape function is not the same as in free space. In
the Supplemental Material [48], we derive the line shape
function for ET reactions in a cavity.
In general, the cavity-donor coupling has two main

effects on the ET reaction rate kET. The first effect is the
Rabi splitting of the dressed donor energy ωD relative to the
acceptor levels. This energy shift can change the driving
force of the reaction ΔE relative to its free-space value

ΔE0. The cavity can, thus, resonantly enhance nuclear
tunneling for ET reactions involving high-frequency
modes.
The second effect of cavity-donor coupling on ET reac-

tions is related to polaron decoupling of the donor electronic
state. As we discussed above, the collective coupling of
donor groups to the same cavity mode effectively preserves
the nuclear configuration of the ground electronic state along
the collective reaction coordinate. For donor and acceptor
excited states that in free space have equilibrium nuclear
configurations with shifts of opposite signs (λDλA < 0)
relative to the jgi, as in Fig. 1(a), polaron decoupling
at low temperatures (or high vibrational frequencies) can
increase the ET rate by orders of magnitude compared to the
free space rate k0. This is illustrated in Fig. 3(a), where we
show the ratio kET=k0 as a function of N for fixed ΔE. We
assume that ΔE is the same in the cavity and in free space,
which can be achieved by tuning the acceptor energy ωA
through chemical substitution [52] or by changing the
solvent polarity [53]. For low vibrational temperature, only
mD ¼ 0 and mA ¼ 0 contribute to the rate for ΔE ≪ ωv. In
this case, the cavity rate kET for resonant tunneling (ΔE ¼ 0)
can be approximated by

kET ¼ ðk0=2Þ exp½λ2D − 2λDλA�; ð7Þ
where k0 is the resonant tunneling rate in free space. This
expression is valid for N ≫ λ2D. The ratio kET=k0, therefore,
exceeds unity whenever the exponent exceeds ln(2). This is
illustrated in Fig. 3(b). Equation (7) also predicts a region
of suppressed reaction rates when λA is near λD. The
equation further shows that the cavity rate has the same size
scaling of V as in free space (see the Supplemental Material
[48] for details).
In summary, we discuss a mechanism for cavity-assisted

decoupling of the nuclear and the electronic molecular

FIG. 3. ET rate kET in an optical cavity. (a) Ratio kET=k0
as a function of N. k0 is the ET rate in free space. Curves are
shown for ΔE ¼ 0 (curve a), ΔE ¼ 2γv (curve b), and ΔE ¼ 5γv
(curve c). We set λD ¼ −λA ¼ ffiffiffi

2
p

. (b) kET=k0 as a function of
λD=λA for N ¼ 104 molecules with λA ¼ ffiffiffi

2
p

and ΔE ¼ 0
(circles). The solid line is the analytical bound in Eq. (7). In
both panels, the vibrational linewidth is ℏγv ¼ 0.01ℏωv, where
ωv is the vibrational frequency, and kBT ¼ 0.1ℏωv. ΔE ≪ ωv is
the donor-acceptor electronic transition frequency taken to be the
same in the cavity and in free space.
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degrees of freedom in a molecular ensemble. This type of
polaron decoupling can enhance or suppress the rate of
intramolecular electron transfer by orders of magnitude in
comparison with free space. Since we only assume con-
ditions of strong coupling of a single cavity mode with an
electronic transition, our results are valid for organic systems
in microcavities [5] and plasmonic nanocavities [9,54]. The
predicted enhancements should be observable for a wide
class of electron transfer reactions that involve large nuclear
rearrangements in excited electronic states [44]. In addition
to intramolecular electron transfer, cavity-induced polaron
decoupling can also be used to modify the photophysical
response of molecular aggregates [55,56] and to control
bimolecular electronor energy transfer processes that involve
nuclear rearrangements in excited electronic states, including
Förster resonance energy transfer [16].
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