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Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial
synchronization in a population of identical inhibitory neurons with delayed global coupling. This system
is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the
thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and
persists in the presence of weak heterogeneities. Finally, the relationship of the model’s dynamics with
fast neuronal oscillations is discussed.
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Electrical measurements of brain activity display a broad
spectrum of oscillations, reflecting the complex co-
ordination of spike discharges across large neuronal pop-
ulations [1]. A particularly fruitful theoretical framework
for investigating neuronal rhythms is to model networks of
neurons as populations of heterogeneous oscillators [2–4].
These models exhibit a prevalent transition from incoher-
ence to partial coherence, when a fraction of the oscillators
becomes entrained to a common frequency. As a result,
a macroscopic oscillatory mode appears with the same
frequency as that of the synchronized cluster [2,5].
Yet, even populations of globally coupled identical

oscillators are capable of exhibiting a much wider diversity
of complex oscillatory states, see [6] for a recent survey.
In general, this is due to the complexity of the coupling
functions and of the individual oscillators. A relevant
example is the so-called quasiperiodic partial synchroniza-
tion (QPS), which has been extensively investigated in
networks of excitatory leaky integrate-and-fire (LIF)
neurons [7–11], as well as in populations of limit-cycle
oscillators and phase oscillators [12–18]. In QPS, the
network sets into a nontrivial dynamical regime in which
oscillators display quasiperiodic dynamics while the col-
lective observables oscillate periodically. Remarkably, the
period of these oscillations differs from the mean period
of the individual oscillators. As pointed out recently [17],
this interesting property of QPS is shared by the collective
chaos observed in populations of globally coupled limit-
cycle oscillators [19–25]. Here, the collective chaotic mode
is typically accompanied by microscopic chaotic dynamics
at the level of the individual oscillators. However, as
noticed in [20], populations of limit-cycle oscillators
may also display pure collective chaos without a trace of
orbital instability at the microscopic level. In this state, the
coordinates of the oscillators fall on a smooth closed curve
and no mixing occurs, what points to the existence of

collective chaos in populations of oscillators governed by a
single phaselike variable.
In this Letter, we uncover the spontaneous emergence of

pure collective chaos from QPS via a cascade of period-
doubling bifurcations. Notably, this is found in a simple
population of identical integrate-and-fire oscillators with
time-delayed pulse coupling, which is thoroughly analyzed
within the framework of the so-called Ott-Antonsen theory
[26–29]. Moreover, we show that pure collective chaos
persists when weak heterogeneities are considered. This
suggests that certain forms of irregular collective motion
observed in large networks of heterogeneous LIF neurons
with delay [30] may already be found for identical neurons.
We investigate a model consisting of a population of

N ≫ 1 neurons, with membrane potentials fVjgj¼1;…;N .
The evolution of Vj is governed by the so-called quadratic
integrate-and-fire (QIF) model, which obeys the nonlinear
differential equation [31–33]

τ _Vj ¼ V2
j þ Ij; ð1Þ

where τ is the neuron’s membrane time constant. When Vj

reaches the value Vp, the QIF neuron emits a spike, and Vj

is reset to Vr. Thereafter, we consider Vp ¼ −Vr ¼ ∞
[34]. In this case, the model (1) can be exactly transformed
to a phase model called theta-neuron [31,33]. The external
inputs Ij have the form

Ij ¼ ηj þ JsD; ð2Þ
where parameters ηj determine the dynamics of each
uncoupled neuron, J ¼ 0: Those neurons with ηj < 0 are
excitable, whereas neurons with ηj > 0 behave as self-
sustained oscillators with a period, or interspike interval
ISIj ¼ πτ= ffiffiffiffi

ηj
p . In Eq. (2), the delayed mean activity

sD ≡ sðt −DÞ is defined summing the spikes of all neurons
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sD ¼ τ

Nτs

XN
j¼1

X
k

Z
t−D

t−D−τs
δðt0 − tkjÞdt0: ð3Þ

In this equation, tkj is the time of the kth spike of the jth
neuron, and δðtÞ is the Dirac delta function. We assume the
thermodynamic limit N → ∞, so that a second limit in
the temporal window τs → 0 leads to the relationship
sD ¼ τrD, where rD ≡ rðt −DÞ is the time-delayed firing
rate, i.e., the population-averaged number of spikes per unit
time. The strength of the interactions is controlled in Eq. (2)
by the synaptic weight constant J, which can be either
positive or negative for excitatory or inhibitory synapses,
respectively.
We start performingnumerical simulations of an inhibitory

(J < 0) population of identical neurons with ηj ¼ η̄ > 0. In
Figs. 1(a) and 1(c), showing raster plots for two values of J,
the system exhibits QPS. In fact, the return plots in Figs. 1(b)
and 1(d) show a closed line indicating quasiperiodic single-
neuron dynamics, see [7]. Remarkably, for certain values of
the time delayD, see Figs. 1(e) and 1(f), increasing inhibition
leads to a different macroscopic state, where neurons exhibit
irregular dynamics, whereas the macroscopic dynamics is
chaotic, as shown below.
Where and how QPS and collective chaos emerge is

investigated next. To this aim, we follow [29] and, using the
Ott-Antonsen theory (by means of a Lorentzian ansatz),
derive the so-called firing-rate equations (FREs) governing
the dynamics of the firing rate r, and the population’s mean
membrane potential v. Considering that currents ηj are
distributed according to a Lorentzian distribution of half-
width Δ, centered at η̄, gðηÞ ¼ ðΔ=πÞ½ðη − η̄Þ2 þ Δ2�−1, we
obtain a system of one ordinary and one delay differential
equations [35]

τ_r ¼ Δ
πτ

þ 2rv; ð4aÞ

τ _v ¼ v2 þ η̄þ JτrD − τ2π2r2; ð4bÞ

which exactly describe the macroscopic dynamics of the
system in the infinite N limit [36]. Hereafter, we set
τ ¼ η̄ ¼ 1 in Eq. (4), without a lack of generality [39].
Figures 2(a), 2(c), and 2(e) display the time series of the

population firing rate, using the parameters of Fig. 1 for
both the network of spiking neurons (1) and the FREs (4).
The attractor of the FREs in Figs. 2(b), 2(d), and 2(f) is in
perfect agreement with the global behavior of the popula-
tion. Figures 1(b) and 1(d) and Figs. 2(a) and 2(c) display
the fingerprint of QPS: oscillations of the mean field,
with a different period (in the present case, longer) than
the individual neurons ISIs. It is noteworthy that the two
oscillations shown in Figs. 2(a) and 2(c) have exactly the
same period: T1 ¼ 2D. This is the consequence of the
symmetry of the limit cycle under v → −v, see Figs. 2(b)
and 2(d). Indeed, using Eqs. (4) with Δ ¼ 0, one finds that
this symmetric cycle is only possible if the period of the
oscillation satisfies

Tm ¼ 2D
m

; with m ¼ 1; 3;… ð5Þ

As parameters are varied, the reflection symmetry of the
limit cycle breaks down at a period-doubling bifurcation.
Moreover, the inset of Fig. 3 shows that this bifurcation is
followed by a period-doubling cascade as parameter J is
varied, giving rise to a state of collective chaos as that of
Fig. 2(f). Remarkably, though the collective dynamics is
chaotic, the single-neuron evolution is not. Indeed, as a
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FIG. 1. Quasiperiodic partial synchronization (a)–(d) and
collective chaos (e),(f) in an inhibitory network of N ¼ 1000

identical QIF neurons with ηj ¼ η̄ ¼ τ ¼ 1, τs ¼ 10−3, and: (a),
(b) D ¼ 2.5, J ¼ −1.65, (c),(d) D ¼ 2.5, J ¼ −1.85, and (e),(f)
D ¼ 3, J ¼ −3.8. (a),(c),(e) Raster plots of 200 randomly
selected neurons. Dots correspond to firing events, and neurons
are indexed according to their firing order. (b),(d),(f) Return plots
for 104 interspike intervals ISIjðkÞ ¼ tkþ1

j − tkj of an arbitrary
neuron j.
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FIG. 2. Macroscopic dynamics of quasiperiodic partial syn-
chronization (a)–(d), and collective chaos (e),(f); same parame-
ters as in Fig. 1 are used. Black curves are obtained integrating
the FREs (4), with Δ ¼ 0. Red curves in (a),(c),(e) are the firing
rates obtained from numerical simulation of the population,
Eqs. (1)–(3). Right panels (b),(d),(f): Phase portraits of the FREs.
The unstable fixed point (brown circle) and the unstable orbit
(brown, dashed line) correspond to incoherence and full syn-
chronization, respectively. The three largest Lyapunov exponents
of the chaotic attractor in panel (f) are f0.055; 0;−0.232g.

PRL 116, 238101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

238101-2



consequence of the mean-field character of the model and
its first order kinetics, the firing order of the neurons is
preserved (i.e., neuron j always fires just before neuron
j − 1), and mixing is not possible.
In the following, we analyze the FREs (4) in detail,

which permits us to elucidate why collective chaos is found
only in a certain range of delays, and only for inhibitory
coupling. For identical neurons,Δ ¼ 0, the only fixed point

is ðrs; vsÞ ¼
h
ðJ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4π2

p
Þ=ð2π2Þ; 0

i
, corresponding

to an incoherent state. Its stability can be determined
linearizing around the fixed point rðtÞ ¼ rs þ δreλt and
vðtÞ ¼ δveλt, and imposing the condition of marginal
stability: λ ¼ iΩ. We find a family of Hopf instabilities at

JðnÞH ¼ πðΩ2
n − 4Þ ×

� ð6Ω2
n þ 12Þ−1=2 for odd n

ð2Ω2
n − 4Þ−1=2 for evenn

; ð6Þ

with associated frequencies Ωn ¼ nπ=D. The line with
several cusps depicted in Fig. 3 corresponds to the
boundaries of incoherence given by Eq. (6). The blue
and red colors indicate the subcritical and supercritical
character of the bifurcation, respectively [40]. The stability
region of incoherence (shaded) closely resembles that of
the Kuramoto model of coupled oscillators, with alternating
domains at positive and negative J values as time delay is
increased [41–44]. However, the presence of supercritical
Hopf bifurcations in some ranges of the inhibitory part of
the diagram is a distinct and important feature of the model
defined by (1)–(2), as we show below.

We also calculated the stability boundaries of the fully
synchronized states, VjðtÞ ¼ vðtÞ, which are given by the
family of functions

JðmÞ
c ¼ 2 cot

�
D
m

�
; with m ¼ 1; 3; 5;…; ð7Þ

and by evenly spaced vertical lines at D ¼ nπ, with
n ¼ 1; 2… [46]. Accordingly, the regions of unstable full
synchrony correspond to the hatched regions of the phase
diagram in Fig. 3. Note that, for weak coupling, i.e., close
to the J ¼ 0 axis, the phase diagram in Fig. 3 is fully
consistent with that of the Kuramoto model with delay [41],
as it can be proven applying the averaging approximation
to model (1) with Δ ¼ 0, see [5,28]. Specifically, we
observe three qualitatively different regions at small jJj:
Incoherence (shaded-hatched), one or more fully synchron-
ized states (white-unhatched), and coexistence between
incoherence and full synchrony (shaded-unhatched).
Away from the weak coupling regime, the system

displays collective phenomena unseen in the Kuramoto
model. Inside the unshaded-hatched region, located below
the Hopf curve Jð1ÞH , both incoherence and synchronization
are simultaneously unstable. Moreover, due to the super-

critical character of the Hopf boundary Jð1ÞH in the range
2.250 < D < 3.684 [47], QPS emerges as a stable, small-
amplitude oscillatory solution—as that of Fig. 2(a)—
bifurcating from incoherence with period T ¼ 2D.
Additionally, QPS can also emerge via the destabiliza-

tion of full synchronization at Jð1Þc . The simulation of the
FREs confirms the prediction of Eq. (7), and allows us to
complete a somewhat peculiar picture: The fully synchro-
nous state is a degenerate, infinitely long trajectory along
the v axis, and the limit cycle corresponding to QPS
emanates from it with an unbounded size—see Fig. 2(d),
for a situation not far away from the bifurcation point.
In Fig. 4(a), a sketch of the bifurcation diagram (valid
for J < −2.54 and D around π) is depicted. Stable QPS
bifurcates from the fully synchronous state at

FIG. 3. Stability regions of the incoherent and fully synchron-
ized states for Δ ¼ 0. Shaded region: Incoherence is stable.
Hatched region: Full synchrony is unstable. Dark gray (blue) and
the light gray (red) lines are the loci of subcritical and super-
critical Hopf bifurcations of incoherence, respectively. The
approximate periodicity of the phase diagram with D stems
from the ISI ¼ π of the uncoupled neurons. Inset: Three largest
(collective) Lyapunov exponents in the range −6 < J < −1.7 for
D ¼ 3, computed numerically from Eq. (4) using the method in

[45]. Note the supercritical Hopf bifurcation at Jð1ÞH ¼ −2.116…
and the accumulation of period-doubling bifurcations at J ≈ 3.5.

FIG. 4. (a) Sketch of the transition between full synchronization
and QPS as D is changed (J < −2.54, Δ ¼ 0); the y axis is an
arbitrary coordinate like, e.g., the minimal value attained by the
firing rate. Full synchrony undergoes two transcritical bifurca-

tions. The first one, at Dð1Þ
c , gives rise to QPS which may,

eventually, undergo secondary instabilities (not depicted) leading
to chaos. At D ¼ π, full synchrony recovers its stability abruptly.
(b) Same sketch for Δ ≠ 0. Left transcritical bifurcation evapo-
rates while the right one becomes a saddle-node bifurcation.
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Dð1Þ
c ¼ arctanð2=JÞ < π, through a transcritical bifurcation

of limit cycles. Then, in a second transcritical bifurcation at
D ¼ π (involving unstable QPS), the synchronized state
recovers its stability. This scenario implies the existence of
a region of bistability between QPS (or collective chaos)
and full synchronization for D > π—in consistence, again,

with the supercritical character of the Hopf bifurcation Jð1ÞH
for D < 3.684.
So far, we have concentrated on identical QIF neurons.

Our final results concern the robustness of QPS and
collective chaos against heterogeneity. In the presence of
heterogeneity, full synchronization and QPS cannot be
observed, but states reminiscent of them persist, as
sketched in Fig. 4(b). Indeed, as the transcritical bifurcation
is fragile, the bifurcation originally located at D ¼ π
is replaced by a saddle-node bifurcation, whereas the other

bifurcation at D ¼ Dð1Þ
c vanishes.

Regarding collective chaos, Figs. 5(a)–5(c) shows numeri-
cal simulations of the heterogeneous QIF neurons (1), with
parameter values close to those of Fig. 1(e). We observe, in
Fig. 5(c), synchronized clusters at different average ISIs.
Using the FREs (4), we checked that (i) the macroscopic
infinite-N dynamics of the model is, indeed, chaotic with
leading Lyapunov exponents f0.013; 0;−0.036g; (ii) the
microscopic dynamics is stable as revealed by the Lyapunov
exponents obtained forcing each neuron by Eq. (4), see
Fig. 5(d). Interestingly, a similar state was numerically
uncovered in [30], and its chaotic nature was attributed to
the presence of quenched heterogeneity. However, our

conclusion is quite the opposite: the chaotic state in Fig. 5
can be regarded as a perturbed version of the collective chaos
in Figs. 1(e) and 2(e), and therefore, heterogeneity is not
essential for observing collective chaos.
The fact that the model studied here exhibits nontrivial

dynamics precisely for inhibitory coupling—in contrast to
the previous studies using LIF neurons [7–11]—deserves
to be emphasized. A large body of data demonstrate that
brain oscillations in the gamma and fast frequency ranges
(30–200 Hz) are inextricably linked to the behavior of
populations of inhibitory neurons [1,48–50]. Moreover,
theoretical and computational studies indicate that these
oscillations emerge as a consequence of the interplay
between inhibition and the significant time delays produced
by synaptic processing, see, e.g., [48,51]. Our results add
to this body of work, showing that QPS and collective
chaos also arise in simple inhibitory populations of phase
oscillators with delayed pulse coupling. Plausible values
for the synaptic delays are of the order ofD ∼ 5 ms, so that
the QPS state studied here necessarily has a frequency
f ∼ ð2DÞ−1 ¼ 100 Hz, corresponding to fast brain oscil-
lations. This is in agreement with the frequency of the
oscillations displayed by heuristic firing rate models with
fixed time delays and inhibitory coupling [51–54]. Exactly
the same range of frequencies is also observed in networks
of identical, noise-driven inhibitory neurons with synaptic
delays, in the so-called sparsely synchronized state
[51,55–57]. Remarkably, sparse synchronization also dis-
plays a macroscopic-microscopic dichotomy, similar to that
of the QPS and collective-chaos states analyzed here.
The analysis of the thermodynamic limit of the model

(1)–(2) bymeansof the firing-rate equations (4), permits us to
dissect macroscopic from microscopic dynamics in that
limit. This strategy seems to be particularly useful for
investigating collective chaos [19–25] as well as irregular
activity states in heterogeneous neuronal ensembles [30,58].
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