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Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond
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We implement and optimize a particle-swap Monte Carlo algorithm that allows us to thermalize a
polydisperse system of hard spheres up to unprecedentedly large volume fractions, where previous
algorithms and experiments fail to equilibrate. We show that no glass singularity intervenes before the
jamming density, which we independently determine through two distinct nonequilibrium protocols. We
demonstrate that equilibrium fluid and nonequilibrium jammed states can have the same density, showing
that the jamming transition cannot be the end point of the fluid branch.
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We clarify the behavior of noncrystalline states of hard
spheres at very large densities where both a glass transition
(in colloidal systems) and a jamming transition (in non-
Brownian systems) are observed [1-3]. Glass and jamming
transitions are usually studied through distinct protocols,
and understanding the relation between these two broad
classes of phase transformations and the resulting amor-
phous arrested states is an important research goal [1-5].
These questions impact a wide range of fields, from the
rheological properties of soft materials to optimization
problems in computer science [1,6].

Let us first consider Brownian hard spheres. When size
polydispersity is introduced, crystallization can be pre-
vented and the thermodynamic properties of the fluid
studied at increasing density until a glass transition takes
place, where particle diffusivity becomes very small [7].
Upon further compression, the pressure of the glass
increases until a jamming transition occurs, where particles
come at close contact and the pressure diverges [8].
Because the laboratory glass transition arises from using
a finite observation time scale, two scenarios were pro-
posed to describe the hypothetical situation where thermal-
ization is no longer an issue [9]. A first possibility is that
slower compressions reveal an ideal glass transition den-
sity, ¢q, above which the equilibrium state is a glass, not a
fluid [2]. Jamming would then be observed upon further
nonequilibrium compression of these glass states [10].
Alternatively, it may be that slower compressions contin-
uously shift the kinetic glass transition to higher densities.
In this view, it is plausible that jamming becomes the end
point of the equilibrium fluid branch [11,12].

Distinguishing between these two scenarios by direct
numerical measurements is challenging. For a well-studied
binary mixture of hard spheres, for instance, thermalization
can be achieved up to ¢« =~ 0.60 [9,13]. The location of
the glass transition must be extrapolated using empirical
fits based on activated relaxation. Values in the range ¢, =
0.615-0.635 were obtained [9], depending on the fitting
function. Fitting the relaxation times to a power law yields
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Pmet © 0.59 < @i, SO that the associated mode-coupling
transition [14] corresponds to an avoided singularity. For
the same system, jamming transitions were located in the
range ¢; = 0.648-0.662 depending on the chosen protocol
[15-17]. The relation between glass and jamming transi-
tions is left unresolved, as thermalization stops long before
any of the singularities can be crossed, @n.« < @9, @7,
and because estimates of ¢, and ¢, are too close to favor
any of the above scenarios. Similar inconclusive results
are obtained for polydisperse hard spheres with a continu-
ous particle size distribution; see Fig. 1. Our standard
Monte Carlo simulations yield slightly different values for
the various critical densities, but they again fall out of
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FIG. 1. Equilibrium relaxation time scale of polydisperse

(A = 23%) hard spheres from conventional Monte Carlo simu-
lations. The power law fit provides an estimate of the location of
the avoided mode-coupling transition, ¢, = 0.598; activated
relaxation fits, exp[B/ (¢y — ¢)?], yield possible locations for the
extrapolation of a diverging time scale, 4001 ~0.648, when o = 1
and go(()2> ~0.672 for 6 =2. The range of jamming densities
0.6487 < ¢; < 0.6534 wusing nonequilibrium protocols (the
shaded area) overlaps with the range of the extrapolated dynami-
cal divergences.
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equilibrium too early to disentangle glass and jamming
transitions.

Our main achievement is the numerical proof that firm
conclusions on these questions can be drawn by imple-
menting a more efficient Monte Carlo sampling method.
The key enabling factor of our computational approach is
the combination of swap Monte Carlo moves and standard
single-particle translations [18-20], which is a simple
instance of a cluster move [21,22]. Swap moves enhance
thermalization in simple mixtures [23], but their efficiency
is significantly higher in continuously polydisperse systems
[24-26]. We show that this optimized sampling method
allows us to thermalize polydisperse hard spheres up to
unprecedentedly large densities. In particular, we achieve
thermal equilibrium in a region of densities where the
jamming transition ¢; can also be located by accepted
methods [9,15,27]. This directly shows, without extrapo-
lating any dynamical data, that point J of jamming does not
correspond to the end point of the fluid equilibrium states.
Our results also imply that the ideal glass transition, if it
exists, occurs in our system at an even larger density,
@o > ¢@;. Conceptually, our results demonstrate that jam-
ming and glass transitions explore distinct parts of the
configuration space, far from and close to equilibrium,
respectively.

We study the canonical model of hard spheres in three
dimensions. The pair interaction is zero for nonoverlapping
particles, infinite otherwise. We use a continuous size
polydispersity, where the particle diameter is distributed
according to p(c, <6 <0y)=A/c’, where A is a
normalization constant. Because of our enhanced
Monte Carlo sampling (see below), crystallization, which
does not occur for ordinarily studied size polydispersities,

A = V6> —5°/6 ~8%—14%, and standard Monte Carlo
dynamics, is easily observed in our simulations. Therefore,
to more deeply penetrate the relevant glassy region and
avoid crystal formation [28], we use a larger polydispersity
of A =23%, choosing o,,/cy = 0.4492. We simulate
systems composed of N = 300, 1000, and 8000 particles
in a cubic cell with periodic boundary conditions. We
present mainly data for N = 1000, except where otherwise
specified. Dynamical relaxation is recorded by measuring
the self-intermediate scattering function F(k, t) at a wave
number k corresponding to the first maximum of the
structure factor. In constant volume simulations, we mea-
sure the pressure P using the contact value of the pair
correlation function [29]. We also perform constant pres-
sure simulations where ¢ fluctuates [30,31]. The reduced
pressure is Z = P/(pkgT), where p is the number density
and kpT is the thermal energy. Times are reported using
standard Monte Carlo time steps [32].

Starting with conventional Monte Carlo dynamics with
translational moves drawn over a cube of linear size
0.1156, we measure the equilibrium relaxation time 7,
of the system from the time decay of the self-intermediate
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FIG. 2. (a) Reduced pressure Z during compressions at finite
rates P with (right curves) and without (left curves) swap. The
swap Monte Carlo method falls out of equilibrium at much larger
volume fractions than conventional sampling. (b) Equilibrium
measurements of the equation of state (the symbols) for different
system sizes. Our equilibrium data go beyond the shaded area,
which represents the determined range of jamming densities. In
both panels, the dashed line is the Carnahan-Stirling empirical
expression [33,34].

scattering function, F(k,7,) = 1/e; see Fig. 1. We
observe an appreciable growth of about 5 orders of
magnitude and we can use standard functional forms to
locate several characteristic densities for viscous slow-
down. First, we locate the mode-coupling crossover using a
power law, 7, ~ (@met — @)77. We get @gne ~0.598. As
shown in Fig. 1, we can thermalize the system beyond ¢,
and conclude that this singularity is avoided [13,21]. We
then use an activated relaxation fit, 7, ~ exp[B/(¢o — ¢)°],
to extrapolate the location of the diverging relaxation
time. We get " ~0.648 for =1 and ¢ ~0.672,
using the exponent § =2 favored in earlier studies
[9,13]. The resulting range of ¢, proves that extrapolating
@, from conventional simulations is a difficult exercise.
When ¢ > @ = 0.605, standard Monte Carlo simu-
lations fall out of equilibrium. This is proved in Fig. 2(a),
where we report the evolution of Z = Z(¢) in simulations
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where we slowly increase the pressure at a finite rate P
varying from P = 10~° down to 1.7 x 10~°. Changing P
over nearly 4 orders of magnitude shows that thermal-
ization is achieved up to increasingly large densities, but
@max increases slowly with a decreasing P, with clear
deviations from the fluid equation of state when ¢ > @y.x-

We now boost thermalization by implementing a swap
algorithm [18-20]. With probability «, we perform conven-
tional Monte Carlo moves where particles are translated, and
with probability (1 — &) we perform a swap move where we
pick two particles at random and attempt to exchange their
diameters. The swap is accepted if it does not create an
overlap. By measuring the structural relaxation times with
swap Monte Carlo dynamics, we find that a = 0.80 is the
optimal value for fast thermalization [26], with an efficiency
that, remarkably, does not depend on system size.

This algorithm respects detailed balance and thus pro-
vides a correct sampling of phase space. That it also
dramatically enhances the sampling efficiency is demon-
strated in Fig. 2(a), where we compress the system using
the same compression rates P as before, but now by
combining swap and translational moves. Whereas the
new sampling method again falls out of equilibrium at large
enough densities, we observe that for ¢ < @ma =~ 0.655,
Z(¢p) does not depend on P. The increase of ¢, from
0.605 to 0.655 is significant, as P should be slower by
many orders of magnitude for the standard dynamics to
perform as well as the swap method. The system shows no
tendency to crystalline order, which would appear as a
horizontal liquid-crystal coexistence plateau in Fig. 2(a).
We further checked the absence of crystalline order for
A = 23% using standard bond-orientational order analysis
[35] and analysis of locally favored structures [36]. We also
checked to see that fractionation and size segregation do
not occur by observing partial structure factors for higher
and smaller particles. By contrast, we observed crystal-
lization at large ¢ for lower values of A. Thus, we conclude
from Fig. 2(a) that our model is both robust against
crystallization and easy to thermalize at extremely large
densities using optimized swap Monte Carlo dynamics.
This represents a major methological progress for computer
simulations of glassy materials.

We now perform equilibrium measurements of the pres-
sure for each density where thermalization can be achieved.
By carefully checking that aging is absent in fully relaxing
time correlation functions (particularly density correlations)
in long simulation runs of up to 10'° swap Monte Carlo
steps, we confirmed that thermalization is achieved for all
N’s up to @ ~0.655, directly establishing that no
ergodicity breaking occurs below this point. Equilibrium
results for the equation of state Z(¢) are reported in Fig. 2(b)
for various system sizes. We find that the empirical
Carnahan-Starling (CS) equation of state for polydisperse
hard spheres [33,34], Zcg, describes our numerical data
surprisingly well up to the largest studied density. Closer

inspection reveals that small deviations from Z~g appear
near ¢ =~ 0.63, above which Z < Zg. Earlier reports had
instead found opposite deviations from the CS equation of
state [8,37-39], probably due to insufficient thermalization,
as we also observe when using finite compression rates.
Also, we do not find evidence for a singular density
describing the equilibrium equation of state.

From these equilibrium data, it is clear that the extrapo-
lated singularity at (pél> = 0.648 (Fig. 1) is not observed,
which shows that the activated relaxation fit with 6 = 1,
akin to the Vogel-Fulcher-Tamman law for molecular
glasses [40], must break down between @, = 0.605
and go(()l) = 0.648. An ideal glass transition, if present,

must occur above @may = 0.655. Therefore, our second

extrapolated value, gof)z) = 0.672, is not ruled out.

We now determine the location of the point J of jamming
for our system. Following earlier works, we employed two
distinct numerical protocols. In a first approach, we
perform very rapid compressions of dilute hard sphere
fluid configurations using Monte Carlo simulations without
swap [9]. We impose a very large pressure, P = 10°, and
measure the longtime limit of the volume fraction. These

fast compressions yield (py) ~ 0.6487. In an independent
protocol, we use energy minimization procedures con-
verting the hard sphere potential into soft harmonic
repulsive springs [15,27], which defines “point J” [15].
We iteratively compress or expand the system starting from
a dilute random system distribution until particles are

precisely at contact [27]. We obtain (p(Jz) ~ 0.6534. These
two values are compatible with earlier determinations of the
jamming transition for polydisperse systems [41]. Note that
slower protocols would jam at larger packing fractions [16].
While jammed configurations produced by the energy
minimization protocol are always isostatic, those obtained
using very rapid Monte Carlo compressions are slightly
hypostatic [42]. This might explain the small difference

between qoy) and (p(Jz) [16].

In Fig. 2(b), we show that the equilibrium equation of
state of the fluid can be measured up to ¢; and beyond,
demonstrating that ¢, cannot be the end point of the fluid
branch. These data indicate, therefore, that ¢, if it exists,
must actually be larger than ¢;. If the jamming transition
does not control the large-pressure behavior of the equi-
librium fluid, its potential connection to glassy dynamics is
then considerably weakened. Fundamentally, the decou-
pling between glass and jamming exposed by our mea-
surements occurs because jamming is observed using
protocols that are very far from thermal equilibrium.
Instead, in the presence of thermal fluctuations, the
configurational space is sampled with the Boltzmann
probability distribution. Distinct sets of configurations
are thus explored in thermal and athermal protocols.

Both to confirm this fundamental difference and to
reinforce our conclusion that fluid and jammed states
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FIG. 3. (a) Memory effect in hard spheres. Time evolution of

the volume fraction starting at t = 0 from a jammed configuration
in constant pressure swap Monte Carlo simulations. A non-
monotonic evolution of the density is observed, showing that
jammed and fluid states are structurally distinct. At long times
(note the break in the time axis), steady state fluctuations are
observed both below and above ¢; around the value (dashed
lines) obtained from the equation of state. (b) Pair distribution
functions of rescaled distances r;;/[(o; + o;)/2] are distinct for
fluid and jammed states near ¢ = 0.6534.

may exist over a similar density range, we perform the
memory experiment shown in Fig. 3(a). We start simu-
lations using the nearly jammed configurations created by
fast Monte Carlo compressions of dilute fluid states. The
pressure in these states is very large, P = 10°. At time
t = 0, we start a constant pressure Monte Carlo simulation
involving particle swaps, for a range of pressures P chosen
such that the corresponding equilibrium volume fractions
lie in the vicinity of ¢;. Therefore, at the time ¢ = 0", the
volume fraction has a value which is already very close to
its equilibrium value. If jammed and fluid states were to be
structurally close to one another, the density should exhibit
a mild time dependence, having similar values at small and
large times. The results in Fig. 3(a) instead demonstrate a
more complex time dependence with a pronounced non-
monotonic behavior. Readers familiar with the physics of
disordered materials will recognize this protocol as a
memory (or Kovacs) effect [43]. Similar nonmonotonic
behaviors were observed in a variety of glassy systems,
from polymer glasses to granular media and spin glasses
[40,44-48].

As soon as the pressure is set to a finite value, the system
undergoes a rapid expansion from the jammed initial

configuration, accompanied by little particle diffusion.
Under the influence of the swap Monte Carlo dynamics,
particles diffuse and the system starts to thermally explore
fluid configurations in order to reach equilibrium at long
times. During this aging process, the volume fraction slowly
increases, which explains the nonmonotonic time depend-
ence. At very large times, the density reaches its steady state
equilibrium value, which depends on the applied pressure
through the equilibrium equation of state. The time series in
Fig. 3 indicate that stationary fluid states exist below, at, and
above ¢;, whereas the nonmonotonic time dependence of
the volume fraction demonstrates that typical jammed and
high density fluid configurations are structurally very
distinct, as testified by the pair correlation functions shown
in Fig. 3(b). The structure of fluid and jammed states differs
not only near contact [where the jammed ¢(r) is highly
singular| but also farther away from contact.

In conclusion, we presented numerical measurements of
the fluid equation of state of hard spheres in a part of the
phase diagram that has thus far been unaccessible to both
numerical simulations and experiments. Our results rule out
the possibility that the jamming transition represents the end
point of the fluid equation of state [11,12], and they suggest
that a glass transition, if it exists, is logically disconnected
from the jamming transition. This situation contrasts with
both leading scenarios discussed in the Introduction,
although it fits naturally in theories where jamming densities
span a finite range of protocol-dependent values [2,10]. A
similar scenario is found in quasi-one-dimensional channels,
where equilibrium fluid and jammed states also coexist over
a density range [49].

The efficiency of the optimized Monte Carlo sampling
developed here, combined with a sufficient degree of
particle size polydispersity [50], paves the way for a set
of novel studies of glassy states in amorphous materials.
We expect this approach to be fruitful in elucidating a
number of outstanding aspects of the glass problem, such as
the existence of the Gardner transition in finite dimensional
systems [51,52], the growth of static point-to-set correla-
tions [53-55] and locally favored structures [56], measure-
ments of configurational entropy [57], and the physics of
ultrastable glasses [58].
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