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A Josephson junction made of a generic magnetic material sandwiched between two conventional
superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is
obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole
reflections at the interfaces between superconducting and normal materials. The semiclassical quantization
condition is shown to depend only on the angle mismatch between initial and final spin directions along
such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position–
particle-hole–spin space is constructed and shown to depend on only two parameters, namely, a magnetic
phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted
via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog
computer of closed-path-ordered exponentials.
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In the past years, the spin-orbit and spin-splitting effects
in superconducting heterostructures [1,2] have received a
great deal of attention in the context of an emerging
superconducting spintronics [3,4] and in connection with
possible realizations of Majorana bound states in nanowires
[5]. A Josephson junction with a magnetoactive normal
bridge exemplifies a prototype structure hosting such a kind
of spin interactions. The physics of superconductor–normal-
metal–superconductor (S=N=S) ballistic Josephson junc-
tions is mainly determined by the so-called Andreev bound
states (ABSs) localized in theN region. These states, which
carry a significant fraction of the Josephson supercurrent
[6,7], have been extensively studied in ballistic supercon-
ducting point contacts [8–10].
Theoretically, the quantization of states trapped in some

classically allowed region can be understood from the Bohr-
Sommerfeld quantization rule [11,12], which requires the
phase accumulated along a closed classical trajectory to be a
multiple of 2π. In a ballistic S=N=S junction, the trapping in
the N region occurs due to Andreev reflections with the
conversion of the incident electron to the reflected hole and
vice versa at the S=N interfaces [13]. Each Andreev
reflection brings a phase shift θðEÞ ¼ arccos ðE=ΔÞ, where
E < Δ is the energymeasuredwith respect to the Fermi level
[14]. The classical loop trajectory is nowdefined in the space
composed of the position and particle-hole subspaces. In the
position subspace, the electron and the reflected hole
accumulate the phase equal to 2EL=v, where L is the
distance between the S electrodes and v is the component
of the velocity perpendicular to the junction plane. From
the two Andreev reflections (shifts in the particle-hole

subspace), the phase acquires the contribution 2θðEÞ � φ,
depending on the propagating direction, where φ is the
phase difference between the two S electrodes (see Fig. 1)
[16]. Hence, the quantization condition for ABSs
reads 2EnL=jvj − 2θðEnÞ þ sgnðvÞφ ¼ 2nπ. The spin-orbit
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FIG. 1. (a) Sketch of the Josephson junction, with ϕ the Fermi
angle and φ the phase difference. (b) Sketch of the energy of the
Andreev bound states, versus φ, spin-split by Φ. (c) The spin
structure of the Andreev-Wilson loop that starts at point x. The
local ne (blue) vector evolves from the left to the right interfaces,
where it is equal to nh (red) which propagates in the opposite
direction [neðxL;RÞ ¼ nhðxL;RÞ]. The spin direction (black dotted
arrows) precesses around the local vectors ne;h at a constant
latitude (red and blue dotted projective circles). After completing
the loop, the spin rotates an angle Φ between the initial and final
states. This angle determines the phase shift between the two
spin-split Andreev bound states [see (b)].
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coupling (SOC) and spin-splitting (exchange or Zeeman),
possibly textured fields in a magnetic material, generate
precession of the electron and hole spins, which should
modify the properties of ABSs. How the semiclassical
condition is modified in the presence of generic spin-
dependent fields is an open question we address in this
Letter.
We identify an additional phase shift Φ originating from

the spin precession generated by an effective magnetic field
in theN region; see Eq. (8). This precession preserves, as in
the nonsuperconducting case [17,18], the latitude with
respect to the local spin quantization axis n, which obeys
a classical equation [Eq. (7)]. We first derive the modified
quantization condition, determine the subgap spectrum of
a ballistic S=N=S junction, and finally demonstrate by
solving the quasiclassical Eilenberger equation how Φ and
n enter the expressions of other physical quantities like the
Josephson current or the spin-resolved local density of
states. Our results generalize the quasiclassical theory of
spinning electrons described by Dirac and/or Pauli equa-
tions [17,18] to the case of quasiclassical motion of
Bogoliubov quasiparticles in superconducting structures.
In the normal state, a nonadiabatic spin precession of
electrons moving along cyclotron orbits is revealed exper-
imentally in anomalous Shubnikov–de Haas oscillations of
magnetoresistance [19]. Here we demonstrate that all
details of highly nontrivial spin dynamics of bogolons
forming ABSs can be extracted from the observable
properties of Josephson junctions.
We consider the semiclassical Bogoliubov–de Gennes

(BdG) bispinor wave function ðu; vÞ ¼ eik·rðψ ; χÞ, where
jkj ¼ kF is the Fermi momentum and the electron ψ and
hole χ spinors are slowly varying on the scale of k−1F [20].
The behavior of the wave function in the presence of an
effective, coordinate- and velocity-dependent, magnetic
field Bðv; xÞ, which couples to the electron and hole spins
and describes generic SOC and exchange or Zeeman spin
splitting, is governed by the following BdG equations:

−iv · ∇ψ þ Bðv; xÞ · σψ þ Δχ ¼ Eψ ;

iv · ∇χ þ Bð−v; xÞ · σχ þ Δ�ψ ¼ Eχ: ð1Þ
We do not impose any restriction on the v or x dependence
of B that, in principle, may correspond to any magnetic
texture and any type of SOC.
After being transported over a closed Andreev trajectory

that starts at x within the N region (xL < x < xR, Δ ¼ 0),
the BdG bispinor should return to itself:

�
ψðxÞ
χðxÞ

�
¼ ei½2EL=v−2sgnðvÞθðEÞþφ�

�
WeψðxÞ
WhχðxÞ

�
; ð2Þ

where v ¼ vF cosϕ and ϕ is the angle between the semi-
classical trajectory and the junction axis x. In Eq. (2), the
effect of spin-dependent fields is encoded in the electron
and hole spin rotation operators

WeðxÞ ¼ Uðx; xLÞŪðxL; xRÞUðxR; xÞ; ð3Þ

WhðxÞ ¼ Ūðx; xRÞUðxR; xLÞŪðxL; xÞ; ð4Þ

which are defined via the path-ordered spin propagator

Uðx2; x1Þ ¼ P exp

�
−
i
v

Z
x2

x1

Bðv; xÞ · σdx
�

ð5Þ

and its time-reversal conjugate Ū [21].
The We;h operators, which transport spinors over a

closed trajectory, are reminiscent of the Wilson loop
operators in the SU(2) gauge theory. They take into account
the electron-hole conversions at the S=N interfaces, and
they are thus defined along the Andreev loop. For this
reason, we call We;h the Andreev-Wilson (AW) loop
operators, which describe transport along a loop in the
composite position ⊗ particle-hole space [22].
Several properties ofWe;h are discussed in Supplemental

Material [24]. The most remarkable is that for any Bðv; xÞ
the trace of We;hðxÞ is x independent; i.e., it does not
depend on the initial point of the loop. Hence, We;hðxÞ can
be parametrized by local unit vectors ne;hðxÞ and a
coordinate independent angle Φ:

We;hðxÞ ¼ exp fi½ne;hðxÞ · σ�Φg: ð6Þ

The vectors ne;hðxÞ satisfy the classical equation of a
magnetic moment precessing in a magnetic field (see [24]):

�v∂xne;h ¼ 2Bð�v; xÞ × ne;h: ð7Þ

Since Andreev reflections preserve the spin, one has the
boundary condition neðxR;LÞ ¼ nhðxR;LÞ [see (3) and (4)]
uniquely defining ne;hðxÞ. One can easily see that the
expectation values of the electron and hole spins, seðxÞ ¼
ψ†σψ and shðxÞ ¼ χ†σχ, have x-independent projections
on the local directions neðxÞ and nhðxÞ, respectively [24].
Notice that ne;h and Φ depends on v. From Eqs. (3) and (4),
one can easily check that ne:Φjv ¼ −nh:Φj−v. Based on the
electron-hole symmetry, we impose that neðvÞ ¼ nhð−vÞ.
From this follows that ΦðvÞ ¼ −Φð−vÞ.
It is now possible to give a semiclassical interpretation

of the AW loops (see Fig. 1) inspired by the picture of
quantization for spinning particles proposed in
Refs. [17,18]. When transported along the loop, the
“classical spins” se;hðxÞ of electrons and holes precess
around local axes, neðxÞ for the electrons and nhðxÞ for the
holes, in such a way that latitude with respect to those axes
is always preserved. If, for example, one starts the AW loop
with a right-moving electron at position x, the electron spin
will precess around the local ne until it reaches the right
electrode. At this point, the electron is reflected as a hole.
The resulting hole propagates from the right to the left
interface with spin precessing around the local holelike
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axis nh. At the left interface, the inverse process takes
place, and the AW loop ends up with an electron precessing
around the neðxÞ axis again. While the rotation axis ne;h
after completing the loop is preserved, the spin itself does
not return to its original direction. There is an angle
mismatch Φ, at fixed latitude with respect to neðxÞ,
between the initial and final spin. Being position indepen-
dent [since 2 cosΦ ¼ TrfWe;hg; see (3)–(6)], this angle
mismatch has a global meaning: It corresponds to the phase
acquired by the wave function after one turn. The single
valuedness of the wave function after a complete period,
expressed by Eq. (2), leads to the generalized semiclassical
quantization condition:

2En;sL
jvj − 2 arccos

En;s

Δ
þ sgnðvÞ½φþ sΦ� ¼ 2nπ; ð8Þ

which determines the spectrum of ABSs, with s ¼ �1
being the spin projection. The appearance of finite Φ lifts
the spin degeneracy of the ABS. From Eqs. (3)–(5), one can
verify that the spin splitting occurs only if the effective
magnetic field B breaks the time-reversal symmetry;
otherwise, the AW-loop operators are trivial [25].
As an example, we consider the widely studied S=F=S

junction (F is a ferromagnet) [1,2]. When the exchange
field points along the z axis, ne ¼ nh ¼ ẑ are constant in
space and Φ ¼ 2

R
xR
xL

hzðxÞdx=v. In particular, this reduces
to the usual Φ ¼ 2hL=v for a monodomain S=F=S [28,29]
and zero Φ for an oscillating exchange field with opposite
domains of equal length [30]. In fact, the previously known
results for various specific S=F=S junctions follow immedi-
ately from our general formulation that is valid for an
arbitrary exchange field and SOC. The main message here
is that all the spin-related features are encoded in the phase
Φ and local unit vectors ne;hðxÞ.
Clearly, the knowledge of the subgap spectral properties

is not sufficient to fully characterize the physics of the
S=N=S junction. To understand, for example, how the
Josephson current is affected by the spin-dependent inter-
actions and finite temperature, or whether a finite magnetic
moment can be created in the junction, one needs to extend
the formalism and take into account all energies in the
spectrum and the electronic distribution functions. For this,
we introduce the quasiclassical Green’s function, solve the
Eilenberger equation for the S=N=S junction, and explore
how the vectors ne;h and the phase Φ, associated with the
AW loop, manifest in physical observables.
For a clean S=N=S junction in the presence of an

effective magnetic field B ¼ hþ bðvÞ, where h is the
spin-splitting or Zeeman field and bð−vÞ ¼ −bðvÞ
describes the SOC, the Eilenberger equation reads [31,32]

iv∂xǧ ¼ ½τ3Eþ ðτ3hþ bÞ · σ þ Δ̌; ǧðxÞ�: ð9Þ
Here ǧ is the matrix Green’s function in the Nambu and
spin space, and Δ̌ ¼ Δeiτ3φ=2iτ2e−iτ3φ=2 is a 4 × 4 matrix

proportional to the identity matrix in spin space and the
Pauli matrices τi spanning the Nambu space. We assume
thatΔ is constant and nonzero in S electrodes only, whereas
B is present in the N region. In Eq. (9), we keep only terms
in the lowest order in ðξpFÞ−1, where ξ is any characteristic
length scale ξ involved in the problem. Higher-order terms
are responsible for the appearance of an anomalous phase
in SFS structures and an additional source for singlet-triplet
conversion [27,33].
By assuming continuity of the Green’s functions across

the interfaces, we obtain for the electron component g of the
Green’s function in N [the (1,1) component of ǧ in Nambu
space] [34]:

gðx; EÞ ¼ −i
X
s¼�

1

2
½1þ sneðxÞ · σ�TsðEÞ; ð10Þ

with s the spin projection and

TsðEÞ¼ tan

�
EL
jvj þarcsin

E
Δ
þsgnðvÞ

�
φ

2
þs

Φ
2

��
: ð11Þ

The poles of Ts for energies E ≤ Δ represent the ABSs, and
we thus recover Eq. (8) explicitly. It is remarkable that the
precession angle mismatch Φ and the local spin precession
axis neðxÞ obtained from our previous semiclassical con-
sideration enter explicitly the Green’s function. We also
note that factors 1

2
½1� neðxÞ · σ� ¼ jψ�ðxÞihψ�ðxÞj in

Eq. (10) are exactly the projectors on the states with spin
up or down with respect to the local direction neðxÞ.
The quasiclassical Green’s function (10) determines

physical observables like the density of states, given by

NðEÞ
N0

¼ 1

π
lim
ϵ→0

ℜ
X
s¼�

hTsðEþ iϵÞi ð12Þ

and the charge current through the junction
j ¼ ð1=4ÞiπeN0kBT

P
ωn
Trhvgi, where h…i denotes aver-

aging over the Fermi surface and the sum is over the
Matsubara frequencies ωn ¼ 2πkBTðnþ 1=2Þ. After the
substitution of Eq. (10), the charge current has the form

j ¼ e
π

4
N0kBT

X
ωn

X
s¼�

hvTsðiωnÞi: ð13Þ

This expression is valid for any Fermi surface, length of the
junction, magnetic interaction, and temperature. In that
respect, it generalizes previous results obtained in ballistic
S=F=S systems [1,2,35,36] to an arbitrary spin texture.
Equation (13) shows that the current phase relation depends
only on the parameter Φ irrespective of its origin. For
example, when T is close to the critical temperature Tc, the
above expression simplifies to
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lim
T≈Tc

j ¼ 2eN0Δ2

π2Tc
hjvje−2πLTc=jvj cosΦi sinφ; ð14Þ

which contains only the global magnetic phase shift Φ,
appearing as a modulation of the Josephson current-phase
relation.
It is clear from Eqs. (12) and (13) that spin-independent

observables, such as the total density of states or the charge
current, do not depend on ne and hence are constant in the
N region. In order to obtain information about the vector
ne, one needs to measure spin-dependent observables. We
introduce the spectral spin density polarized in the a
direction (spin-resolved density of states) defined by

NaðEÞ
N0

¼ lim
ϵ→0

ℜhTrfσaggi
π

¼ 1

π
ℜ
X
s¼�

hsna
eTsi; ð15Þ

that can be determined by means of tunneling spectroscopy
similar to the ABS spectroscopy done in carbon nanotubes
connected to superconductors [37]. If instead of nanotubes
one uses semiconducting wires with a strong enough
intrinsic SOC, a Zeeman field will induce a finite Φ lifting
the degeneracy of the ABS. The phase Φ will also manifest
itself through the Josephson current according to Eq. (14).
In a similar experimental setup, one can have access to the
spectral spin density Na (15). Suppose the detector is fully
polarized (i.e., in a half-metallic limit) and magnetized
along the a direction; by performing two measurements of
the differential conductance for opposite magnetizations of
the tunneling probe, Ga and G−a, one determines
GaðVÞ −G−aðVÞ ∝ na

P
s¼�1sTsðVÞ. Thus, by measuring

the total and spin-dependent density of states, one can have
an access to the parameters Φ and ne which determine the
full AW loop operator (3).
Previous results have been obtained assuming a perfect

contact between the S electrodes and the N link. One can,
however, generalize the Bohr-Sommerfeld quantization
condition when adding scattering interfaces between the
S and N materials [38]. Assuming the left (L) and right (R)
interfaces with transmission probabilities TL;R ¼ 1 − RL;R
and reflection coefficients rL;R with jrL;Rj2 ¼ RL;R, one
obtains for a single channel junction (see [24])

cos

�
2EL
vF

þ sΦþ 2θ

�
− ðRR þ RLÞ cos

�
2EL
vF

þ sΦ

�

þ RRRL cos

�
2EL
vF

þ sΦ − 2θ

�

¼ TLTR cosφ − 2ðrLrR þ r�Lr
�
RÞsin2θ ð16Þ

for the condition of existence of ABSs. Equation (16)
generalizes results known for the case of S=N=S systems
without magnetic interactions; the case Φ ¼ 0, rL ¼ 0 has
been obtained in Ref. [39]. Supposing a strong enough
magnetic texture, such that Φ ≫ 2EL=vF, one can plot the

ABS of a short Josephson junction for different junction
transparency. As an example, we consider a symmetric
junction with δ barriers at the interfaces: rL ¼ rR ¼
−iZ=ð1þ iZÞ; see Fig. 2. In contrast to the case Φ ¼ 0,
where any finite barrier strength (Z ≠ 0) opens a gap, a
finite Φ leads to a critical value of Z below which zero-
energy states exists. As one can infer by comparing the
upper and lower rows in Fig. 2, this critical value of Z
increases by increasing Φ.
In conclusion, we have derived the semiclassical quan-

tization condition for a S=N=S Josephson junction when
the normal region exhibits a generic SOC and exchange or
Zeeman field. We obtained the spectrum of ABS Eq. (8)
and the quasiclassical Green’s function Eq. (10) and
analyzed several physical observables in the presence of
such a generic spin-dependent field. We demonstrated that
all the properties of the junction are expressed in terms of
two fundamental parameters: Φ and nðxÞ; see Fig. 1. These
two parameters have a clear semiclassical meaning. The
unit vector nðxÞ describes the local spin quantization axis
about which a classical spin precesses at a constant latitude
while propagating through the junction. The magnetic
phase Φ corresponds to the mismatch of the precession
angles after a quasiparticle completes the closed Andreev
orbit. Φ enters explicitly the expression for the Josephson
current, while n can be accessed experimentally by
measuring the spin-resolved density of states. A magnetic
Josephson junction can thus be used as an analog computer
of path-ordered loop operators (3)–(6).

FIG. 2. The spin-split ABS energy E=Δ in a S=N=S junction
with a finite interface transparency versus the phase difference φ,
in the limit Φ ≫ 2EL=vF from Eq. (16). Left column: The
strength of the interface δ barrier Z ¼ 0; right column: Z ¼ 0.5.
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