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We experimentally study a driven-dissipative Josephson junction array, realized with a weakly
interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses
on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the
driving force. We characterize the emerging steady states of this atomtronic device. With increasing
dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson
current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For
intermediate values of γ, the system exhibits bistability, where a superfluid and an incoherent branch
coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing
down, indicating the presence of a nonequilibrium phase transition.
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Nonequilibrium steady states (NESS) constitute fixed
points of the phase space dynamics of classical and
quantum systems [1–3]. They emerge under the presence
of a driving force and lie at the heart of transport
phenomena such as heat conduction [4–6] or current flow
[7–9]. They also naturally appear in open quantum systems
[10,11] and are connected to the study of nonequilibrium
thermodynamics and nonequilibrium quantum phase tran-
sitions [12]. It has been pointed out that engineering
open quantum systems can induce a phase space dynamics
that drives the quantum system in a pure state by solely
dissipative means [13–16]. Controlling and understand-
ing the nonequilibrium steady states of an open many-
body quantum system therefore offers new routes for
quantum state engineering and out-of-equilibrium quan-
tum dynamics.
In general, the dynamics of an open quantum system is

characterized by the competition between the intrinsic
unitary dynamics, governed by the Hamilton operator H,
and the coupling to the environment, which induces
nonunitary time evolution and quantum jumps. These are
described by the Lindblad operators (R̂i, R̂

†
i ), which act on

the system with rate γi, where we use the standard textbook
definition [10]. The time evolution of the density matrix ρ
in Markov approximation is then described by a master
equation in Lindblad form [17],

_ρ ¼ LðρÞ ¼ −
i
ℏ
½H; ρ�

þ
X

i

γi
2
ð2R̂iρR̂

†
i − R̂†

i R̂iρ − ρR̂†
i R̂iÞ: ð1Þ

NESS are defined by the condition LðρNESSÞ ¼ 0. The
steady state can be a mixed state or a pure state, i.e.,
ρNESS ¼ jΨNESSihΨNESSj. When the jump operators do not

affect a pure state, such that R̂ijΨNESSi ¼ 0, the state
jΨNESSi is called a dark state. Steady states have the
peculiar property that they can be attractor states of the
phase space dynamics. This is especially interesting for
dark states, because it allows for the dissipative creation
of a pure quantum state, which is decoupled from the
dissipation. The same mechanism also stabilizes the sys-
tem, as the dissipation always drives it back into the dark
state. Engineered dissipation is therefore a way to create
robust quantum states.
Here, we investigate the steady states of a driven-

dissipative Josephson junction array realized with a
Bose-Einstein condensate (BEC) in a one-dimensional
optical lattice [18]. The dissipation is implemented as a
local particle loss in one site, and the drive is provided by
tunneling of atoms from the adjacent sites (Fig. 1).
The experiment is realized with a weakly interacting

BEC of 45 × 103 87Rb atoms in a one-dimensional periodic
potential with high occupancy per site [19]. Each site
contains a small condensate (N0 ≈ 700 atoms in the center
of the trap) and all of them are connected via the tunneling

FIG. 1. Schematics of the experiment. One site of an array of
superfluids is subject to an incoherent local loss process with rate
γ. The coherent tunneling coupling between the reservoir sites is
given by J. The coupling to the lossy site is given by J0ðNÞ and
depends on the filling level (see text).
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coupling J, which is controlled by the height of the optical
lattice. Employing a scanning electron microscopy tech-
nique [22], we introduce a well-defined local particle loss
as a dissipative process in a single site of the system. To set
the dissipation strength γ, we adjust the effective intensity
of the electron beam [19]. The corresponding jump
operator is then given by the bosonic annihilation operator
âm (the index m denotes the affected site), acting on all
spatial modes of the lossy site with the same dissipation rate
γ. A fraction of the lost atoms is ionized by the electron
beam and serves as a continuous probe of the occupation
of the lossy site. The drive is provided by the large number
of full sites left and right. The overall atom loss during a
measurement is about 10%, such that we can consider these
sites as a superfluid reservoir. Figure 1 shows a sketch of
the experimental scenario. Related systems based on
dissipative Bose-Hubbard models have been studied theo-
retically in Refs. [23–26].
At the beginning of each experimental sequence, we

initialize different starting conditions by optionally empty-
ing the lossy site. Upon continuous dissipation, a steady
state is established on a time scale of several tens of
milliseconds and the losses are balanced by the refilling
dynamics. At the end of the experimental sequence we
freeze out and probe the final density distribution in a deep
lattice. Figure 2(a) shows the resulting filling level of the
lossy site in the steady state in dependence of the
dissipation rate γ. The two data sets correspond to an
initially full site (blue points) and empty site (red points).
For small values of γ, both initial conditions lead to a
completely full site in the steady state. For large dissipation,
the lossy site is almost empty in both cases. The most
prominent feature appears in between: the appearance of
bistability. Starting from an empty site leads to a different
filling level in the steady state compared to starting from a
full site. The inset in Fig. 2(a) shows the two different
trajectories, clearly displaying the two coexisting steady
states. As will be explained in detail below, we refer to the
steady states with unity filling as the superfluid branch (SF)
and with finite population difference as the lower
branch (LB).
To analyze the properties of the steady states we evaluate

the current of atoms into the lossy site. The temporal
evolution of the atom number in that site is given by

_NðtÞ ¼ −γNðtÞ þ IðtÞ; ð2Þ

where NðtÞ is the number of atoms in the lossy site and IðtÞ
is the current from the reservoir sites. The steady state has
to fulfil _N ¼ 0, such that the steady-state current is given by
IS ¼ γNS, where the subscript denotes the steady-state
value. This allows us to convert the filling level shown in
Fig. 2(a) into the current plot shown in Fig. 2(b).
Converting the atom number difference in chemical

potential difference [27], we can also extract the current-
voltage characteristics for the steady states [Fig. 2(c)].
We now discuss the nature of the different steady states

that we observe. For small dissipation, when the filling is
always equal to 1, the current into the lossy site is
exactly linear to the applied dissipation [Fig. 2(b)]. This
is remarkable, as the dissipation is externally applied
and it is not a priori obvious that the current response
induced by the dissipation exactly balances the losses.
Because there is no difference in atom number between
the sites in this regime, the current cannot be driven by a
difference in chemical potential. Instead, it can only be
driven by a phase gradient between the sites, thus
constituting a supercurrent. This is also visible in the
current-voltage characteristics for the steady states
[Fig. 2(c)], which show the characteristic behavior

FIG. 2. (a) Steady-state filling level of the lossy site in
dependence of the dissipation strength γ for an initially full
(blue circles) and empty (red squares) site. The tunneling
coupling between the sites is J=ℏ ¼ 230 s−1. The hatched area
indicates the region of bistability (the transparent, solid lines are a
guide to the eye). The dashed and dash-dotted black lines are
results of theoretical models as discussed in the main text. γLB,
γCSD, and γSF denote critical values of the dissipation, obtained
from the data, and are also explained in the main text. Inset:
dynamical evolution of the system into the steady state within the
bistable region for both initial conditions. (b) Steady-state current
into the lossy site in dependence of γ. (c) For small values of Δμ,
the current-voltage characteristics display the typical behavior of
a superconductor.
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of a superconductor: a finite current in the absence of an
applied voltage.
The appearance of a supercurrent can be directly under-

stood from an effective Josephson model

iℏ
∂ψn

∂t ¼−Jðψn−1þψnþ1ÞþUjψnj2ψnþ i
γ

2
ψnδnm; ð3Þ

where J is the tunneling coupling, U is the on-site
interaction, and m denotes the lossy site. In this mean-
field version of the problem, the losses are implemented as
an imaginary potential [28]. This model indeed supports a
steady-state solution with unity filling at each site and a
phase difference of sinðΔΦÞ ¼ ℏγ=ð4JÞ between all adja-
cent sites [shown as the dashed black line in Fig. 2(a)]. The
observed supercurrent is therefore a steady state under the
combined action of the unitary dynamics and external
dissipation. The theoretical model predicts that the steady
state is a pure state, corresponding to a Bloch state with
finite quasimomentum q. For small values of γ, the system
reaches a superfluid steady state irrespective of the initial
condition. These steady states are therefore attractor states
of the phase space dynamics and their generation is an
example for dissipative quantum state engineering. A
related situation has been theoretically studied for a three
well system in Ref. [29]. There it was found that the
interplay between dissipation and interaction leads to a
well-defined relative phase between the three wells.
The Josephson model predicts a maximum possible

supercurrent of Icrit ¼ 4NJ=ℏ. In our experiment, we only
reach about 25% of this value. This indicates that the
validity of the Josephson model breaks down above a
critical dissipation strength [denoted by γSF in Fig. 2(a)].
Indeed, this does not come as a surprise, as the full
microscopic model of our experiment goes beyond the
validity of Eq. (3). During the dynamics, each site can
support transverse excitations and phase fluctuations, thus
rendering the supercurrent unstable. For a dissipation
strength below the critical value γSF, however, a clear
supercurrent can be observed, in analogy to an electric
supercurrent in a voltage biased Josephson junction [30].
We therefore refer to this class of steady states as the
superfluid branch.
For a dissipation strength exceeding γSF, all steady states

are characterized by a strongly reduced population in the
lossy site, corresponding to a finite voltage drop. The
coherence to the neighboring site is destroyed and
the transport of particles is realized by incoherent hopping
processes. As the tunneling coupling reduces with increas-
ing population imbalance (see below), this regime exhibits
negative differential conductivity, as observed previously
[27]. Because of the absence of superfluidity, this regime
can be modeled with an effective single particle model,
including local phase noise due to collisions, losses, and a
filling dependent effective tunneling coupling [19]. The
result is shown in Fig. 2(a) as dash-dotted black line. For

better comparison with the experiment, we plot the solution
of the model for the whole range of γ. Note that this model
does not include the interaction between the atoms and
therefore does not support superfluid transport. For
γ > γSF, the phase noise and the dissipation rates com-
pletely dominate the dynamics and we refer to this class of
steady states as normal.
The bistable region (γLB < γ < γSF) supports superfluid

steady states and steady states with finite population
difference. Bistability occurs in various physical systems,
e.g., optics [31] and electronic tunneling devices [32], and
requires an intrinsic nonlinearity in the system. In our
experiment, the nonlinearity has its origin in the interaction
energy between the atoms, which leads to a filling
dependent on-site energy. Different filling therefore corre-
sponds to a difference in chemical potential. Atoms
tunneling into the lossy site are therefore either off-
resonantly coupled to a condensate with reduced atom
number (provided a condensate fraction exists at all) or can
tunnel resonantly into radially excited states. In this case,
however, an additional Franck-Condon factor comes into
play that leads to a reduced tunneling coupling J0ðNÞ < J.
The availability of these single particle states in the central
sites prevents the system from self-trapping [27]. Both
effects suppress the transport of particles in the central site,
thus giving rise to bistability.
The precise microscopic modeling of the bistability

region is challenging. We first note that the scaling of
γLB with J follows a power law with an exponent of 1.7(2)
[Fig. 3(a)]. This quadratic dependence suggests that the
steady states in the LB have an incoherent component and
the transport can no longer be provided by a supercurrent
alone. Moreover, the LB connects to the normal regime,
where the transport is completely incoherent. Therefore, a

FIG. 3. (a) Critical dissipation rate γLB in dependence of the
tunneling rate. We find a power law dependence with an exponent
1.7(2). This corresponds to a transition from a coherent to an
incoherent process at which the internal rates become propor-
tional to J2. (b) Time τ in which the steady state is reached for
different dissipation rates at J=ℏ ¼ 290 s−1. Within the bistable
region τ is increasing, which is known as critical slowing down.
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realistic model has to merge the ingredients of both models
introduced above: (i) superfluid transport, (ii) nonlinear
tunneling coupling, (iii) phase noise, and (iv) dissipation. In
addition, (v) it has to exclude self-trapping in order to
correctly account for the multimode level structure in each
well. Such a model is practically not feasible due to the
many spatial modes and high atom number. From a
qualitative point of view, the appearance of bistability
can be explained on a mean-field level using an effective
single site Hamiltonian with pumping term [26,31].
However, we could not find quantitative agreement within
the parameter range. The qualitative understanding of the
appearance of bistability is clear: for a given dissipation
strength, the superfluid response is strong enough to
preserve unit filling, while the reduced tunneling current
for lower filling cannot compete with the losses. This is also
visible in Fig. 2(a), where the two simplified models
provide the correct boundaries for the steady states.
We close the discussion by analyzing the dynamics

towards the steady state and studying the nature of the
transition from normal to superfluid transport. Starting
from an initially empty site [red points in Fig. 2(a)] we
measure the time scale τ in which the steady state is
established. In Fig. 3(b), we show τ in dependence of the
dissipation rate. Increasing the dissipation rate, τ increases
accordingly, reaching a maximum value and drastically
dropping at a critical dissipation strength γCSD. Note that
Fig. 3(b) is measured for a different value of J. This is
reminiscent of a critical slowing down [33] and appears
well within the bistable region [indicated with a star in
Fig. 2(a)]. We assume that this critical slowing down
originates form the phase transition from a normal gas
to an out-of-equilibrium condensate in the lossy site.
Without dissipation, the conditions for Bose-Einstein con-
densation are already reached for a filling level of 10% and
one would expect the appearance of a condensate through-
out the LB. In the presence of dissipation, however, the
formation of a condensate competes with the losses, thus
modifying or even inhibiting a phase transition. Three
observations support the presence of a phase transition.
(i) The current in the LB for γ < γCSD is higher than any
current we observe for the bare refilling dynamics without
dissipation. This suggests a partially superfluid transport.
(ii) This is in accordance with the effective single particle
model [dash-dotted line in Fig. 2(a)], which starts to deviate
from the experimental data around γCSD, thus indicating the
onset of superfluid transport. (iii) The width of the radial
density distribution in the lossy site is slightly reduced for
γ < γCSD despite the higher atom number. This suggests a
condensation process in the lossy site.
Because all involved time scales, such as the dissipation

rate γ, the effective tunneling coupling J0ðNÞ, and the
collision rate [27] are of similar magnitude, such a con-
densation process is likely to be a nonequilibrium process,
as observed, e.g., in exciton-polariton condensates [34]. In

the future, a detailed study of the atom number fluctuations
and the scaling laws around γCSD will offer new ways to
characterize and classify such nonequilibrium phase tran-
sitions with a high level of control.
All previously obtained results can be summarized in a

phase diagram (Fig. 4), where the steady states are
classified in three regimes. For small dissipation rates
and high tunneling couplings the system ends up in a
superfluid state (blue shaded area) independent from the
starting condition. Adjacent is the bistable region (hatched
area) in which the system stays superfluid starting from a
full site but ends up in a steady state with finite atom
number difference when starting from an empty site.
Further increasing the dissipation rate connects the bistable
region to the normal region (red shaded area) characterized
by low filling and incoherent hopping transport. The data
points are the corresponding boundaries for γLB, γCSD, and
γSF obtained from the analysis of Figs. 2(a) and 3(b) for
different tunneling couplings, respectively. Within the
bistable region, we find a critical slowing down (indicated
by the yellow line), which we interpret as an out-of-
equilibrium condensation process in the LB. In
Ref. [12], it has been studied how nonequilibrium noise
affects the normal to superconductor phase transition in a
single Josephson junction, which is described by a simple
phase boundary. In the present work, the nonlinear tunnel-
ing coupling prevents the existence of a simple phase
boundary, but introduces a region of bistability between the
superfluid and normal steady states. The rich phase

FIG. 4. Phase diagram of the steady states. The blue shaded
area marks the region where the lossy site is always filled
independent from the initial condition and a supercurrent is
induced. The red shaded area denotes the region of normal
steady states, where the system ends up in an almost empty site
with an incoherent hopping transport, driven by the difference in
chemical potential. In between (hatched area) the system is
bistable, resulting in different steady states depending on the
initial conditions. The blue squares (red dots, yellow stars)
denote γLB (γSF, γCSD). The blue line is the fit from Fig. 3(a),
the yellow line is a guide to the eye, and the red line marks
the boundary, where the dissipation strength γ equals the
coherent coupling J=ℏ.
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diagram promotes the dissipative Josephson junction as a
versatile tool for atomtronics applications. The transport
properties can be switched between different regimes and
tuned over a large parameter range. They can even be varied
dynamically, thus taking advantage of the intrinsic hyste-
resis in the system.
Engineering a local loss process in an ultracold quantum

gas, we have achieved a high level of control over an open
many-body quantum system. This has allowed us to study
and characterize the steady-state phase diagram of a driven-
dissipative superfluid and to observe bistability. Our results
manifest the high potential of open system control in
ultracold quantum gases. Closely related to our experiment
is the appearance of a superfluid branch and a dissipative
branch in biased Josephson junctions [35]. In the future,
studying the fluctuations around the steady states will be a
tool to look at generalized dissipation fluctuation theorems
for nonequilibrium systems [36]. The exploration of
quantum phases with the help of competing dissipation
mechanisms [37], the quest for complex many-body dark
states [13,14,38–40], and the investigation of nonequili-
brium phase transitions [41] make open system control a
paradigm for future quantum research.
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