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We report on the site-resolved observation of characteristic states of the two-dimensional repulsive
Fermi-Hubbard model, using ultracold 40K atoms in an optical lattice. By varying the tunneling, interaction
strength, and external confinement, we realize metallic, Mott-insulating, and band-insulating states. We
directly measure the local moment, which quantifies the degree of on-site magnetization, as a function of
temperature and chemical potential. Entropies per particle as low as 0.99ð6ÞkB indicate that nearest-
neighbor antiferromagnetic correlations should be detectable using spin-sensitive imaging.
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Strongly correlated fermions present a fundamental
challenge to many-body physics, as no general method
exists to predict what phenomena will emerge [1].
Ultracold gases of fermionic atoms have shown promise
as a clean, highly controllable platform for studying such
systems [2,3]. One prominent example is the realization of
strongly coupled fermionic superfluids, enabled by the
enhanced interactions that arise near a Feshbach resonance
[4,5]. Another class of strongly correlated systems well
suited for simulation with ultracold atoms is lattice models,
in which the kinetic and interaction energies can be set to
comparable strengths [3,6]. One such model is the Fermi-
Hubbard model, believed to capture the essential aspects of
high-temperature superconductivity [7,8].
The realization of the Fermi-Hubbard model at low

entropies has been a longstanding goal in ultracold atom
experiments. Mott-insulating behavior has been observed in
three dimensions (3D) via reduction of double occupancies
and compressibility [9–12]. Short-range antiferromagnetic
correlations above the Néel temperature were observed via
Bragg scattering and dimerized lattices [13–15]. Recently,
the equation of state of the Fermi-Hubbard model has been
measured in two dimensions (2D) for spin 1=2 and in 3D for
higher spin values [16,17]. However, these experiments
relied on conventional imaging techniques that do not allow
site-resolved measurements of microscopic quantities.
Such microscopic measurements first became possible in

bosonic systems through the development of quantum gas
microscopes with single-site resolution, and have enabled
studies of ordering, spatial structures, and correlations in
the Bose-Hubbard model [18–21]. Recently, the ability to
perform single-site imaging has been extended to the two
workhorse fermionic isotopes of alkali atoms, 6Li and 40K
[22–26]. While 6Li has faster lattice dynamics due to its
smaller mass, 40K features a larger fine structure splitting,
which is beneficial for implementing spin-dependent
potentials and spin-orbit coupling.
After initial demonstrations of site-resolved imaging of

nondegenerate Fermi gases, the goal has been to apply

these imaging techniques to low-entropy degenerate gases
in order to study quantum many-body phenomena. Within
the past few months, Pauli blocking was directly observed
in a spin-polarized gas of 6Li [26], and the metallic, Mott-
insulating, and band-insulating states of the 2D Fermi-
Hubbard model have been directly detected, both in 6Li
[27], and, as reported in this paper, in 40K. In this Letter, we
also demonstrate the formation of local moments at half
filling as the temperature is lowered.
Our system is described by the single-band 2D Hubbard

Hamiltonian with two spin states on a square lattice,

Ĥ¼−t
X

hi;ji;σ
ðĉiσ ĉ†jσþH:c:ÞþU

X

i

n̂i↑n̂i↓þ
X

i;σ

ðVi−μ0Þn̂iσ;

where ĉiσ (ĉ†iσ) is the fermion annihilation (creation)
operator for spin σ ¼ f↑;↓g on site i, niσ ¼ ĉ†i;σ ĉi;σ is
the number operator on site i, and angle brackets indicate
summation over nearest neighbors. U and t denote the
on-site interaction energy and nearest-neighbor hopping
amplitude, respectively, while μ0 is the chemical potential
and Vi is the on-site energy due to the overall trapping
potential. The trapping potential is approximated by
Vi ¼ 1

2
mω2d2i a

2, where m is the atomic mass, ω is the
global trapping frequency, di is the distance in lattice sites
from the center of the trap, and a is the lattice spacing.
Despite the simplicity of the Hamiltonian, this model is

theoretically intractable and has been solved only in special
cases. At weak interactions (U=8t < 1) or when the average
filling is well below unity, the system is metallic. If the
chemical potential is high enough to fill all available states,
the system becomes a band insulator, with two opposite-spin
atoms per site. At strong interactions (U=8t ≫ 1) and at half
filling, another insulating state, the Mott insulator, appears
when the temperature kBT ≪ U. At temperatureswell below
the superexchange scale of 4t2=U, long-range antiferromag-
netic correlations arise. It is conjectured that d-wave super-
conductivity emerges upon doping a magnetically ordered
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Mott insulator [7,8]. Within the local density approximation
(LDA), the overall harmonic confining potential leads to a
spatially varying local chemical potential, and thus metallic,
Mott-insulating, and band-insulating states can coexist
within the same sample [28,29].
To realize this model, we begin by sympathetically

cooling 40K atoms with 23Na atoms in a magnetic trap.
The 40K atoms are then transferred into an optical dipole
trap, and an equal mixture of hyperfine states jF ¼
9=2; mF ¼ −9=2i and j9=2;−7=2i is created. After evapo-
ration and transport, we obtain a highly oblate layer of
∼300 40K atoms in the x-y plane 7 μm underneath the
imaging system. Subsequently, we ramp up a square optical
lattice in the x-y plane, with lattice spacing a ¼ 541 nm,
to a depth of either 6ER, 12ER, or 18ER, where
ER ¼ ðℏ2=2mÞðπ=aÞ2. The laser beams that create the
x-y lattice also interfere to form a lattice along z with
3 μm spacing, where only one layer is populated. We use
the lattice depth to tune the Hubbard parameters t and U,
without utilizing any Feshbach resonances. For this work,
the magnetic field is set to 4.5 G, where the scattering
length is 170a0, a0 being the Bohr radius. While the lattice
is ramped up, the radial confinement within the plane is
brought to the desired value. For imaging, the lattice depth
is quickly increased to ∼1000ER, while an additional lattice
along the z direction with spacing 532 nm is also applied.
We detect the occupation on each lattice site using Raman

sideband cooling, which cools the atoms while scattering
enough photons to produce a fluorescence image [22]. This
imaging technique, combined with an image reconstruction
algorithm, allows us to determine the occupation of a given
lattice sitewith ameasured imaging fidelity of 95%. Because
pairs of atoms residing on the same site are lost during
imaging due to light-assisted collisions [30], only the parity
of the occupation is detected. Additionally, this imaging

method does not distinguish between the two spin states.
The average detected occupation at site i is thus given by
ndetðiÞ ¼ hn̂detðiÞi, where n̂detðiÞ ¼ n̂i↑ þ n̂i↓ − 2n̂i↑n̂i↓.
We directly observe the metallic, Mott-insulating, and

band-insulating states using three configurations of lattice
depths and radial confinements. The three different samples
are prepared identically until the 2D lattice ramp, where both
the depth of the lattice and the radial confinement are
adjusted. In Fig. 1 we show the site-resolved fluorescence
images and the reconstructed detected site occupations. In
Fig. 2 we show profiles of the corresponding radially
averaged parity-projected densities ndet and their variances.
The Mott-insulating and band-insulating states are both
expected to show suppressed variance in ndet. In particular,
the variance is suppressed in Mott-insulating regions due to
the charge gap, which is U at half filling; in the band-
insulating regions, it is suppressed instead by Pauli blocking.
In the metallic regions the variance is not suppressed, and in
the case of half filling it equals 0.25, since a site is equally
likely to be empty, doubly occupied, or singly occupied by an
atom of either spin state. The variance can either be directly
measured, or obtained via hn̂2deti − hn̂deti2 ¼ ndetð1 − ndetÞ.
This is due to the operator identity n̂2iσ ¼ n̂iσ for fermions,
which implies hn̂2deti ¼ hn̂deti, and more generally all
moments of ndet can be found from ndet itself.
The metallic state, with peak occupation 0.7 and peak

variance ∼0.25, is shown in Figs. 1(a), 1(d), 2(a), and 2(d).
Here, the lattice depth is 6ER and the radial confinement is
ω ¼ 2π × 111 ð3Þ Hz.This corresponds toU=8t̄ ¼ 0.33ð4Þ,
where t̄ ¼ ffiffiffiffiffiffiffi

txty
p

is the mean hopping amplitude, with tx (ty)
being the mean hopping amplitude along the x (y) direction
[39]. In order to observe the Mott insulator, shown in
Figs. 1(b), 1(e), 2(b), and 2(e), we increase the interaction
to U=8t̄ ¼ 12.3ð8Þ by increasing the lattice depth to 18ER

FIG. 1. Metallic, Mott-insulating,
and band-insulating states under
the quantum gas microscope: ob-
served fluorescence images, showing
(a) the metallic state, with μ0=h ¼
280 ð40Þ Hz, ω ¼ 2π × 111 ð3Þ Hz,
and U=8t̄ ¼ 0.33 (4) with U=h ¼
540 ð60Þ Hz; (b) the Mott-insulating
state, with μ0=h ¼ 624 ð22Þ Hz,
ω ¼ 2π × 115 ð3Þ Hz, and U=8t̄ ¼
12.3 (8) with U=h ¼ 1350 ð50Þ Hz;
and (c) the band-insulating state,
with μ0=h ¼ 1450 ð40Þ Hz, ω¼
2π×181ð3ÞHz, and U=8t̄ ¼ 2.6
(1) with U=h¼1007ð40ÞHz. [(d)–(f)]
Reconstructed detected site occupa-
tions corresponding to (a)–(c),
respectively.

PRL 116, 235301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

235301-2



and the trap confinement to ω ¼ 2π × 115 ð3Þ Hz. The
detected site occupation flattens to 0.98(2) at the trap center,
with a corresponding variance less than 0.03. To observe the
band insulator, shown in Figs. 1(c), 1(f), 2(c), and 2(f), we

increase the global chemical potential, by increasing the trap
confinement to ω ¼ 2π × 181 ð3Þ Hz, while reducing the
interaction toU=8t̄ ¼ 2.6ð1Þ, by lowering the lattice depth to
12ER. At the center the detected density is depleted and the

FIG. 2. Radially averaged detected site occupation [(a)–(c)], variance [(d)–(f)], and entropy [(g)–(i)], with theoretical curves. [(a), (d),
and (g)] Metallic state, with μ0=h ¼ 280 ð40Þ Hz and kBT=U ¼ 1.46ð18Þ; average entropy per particle S=N ¼ 1.7ð1ÞkB. [(b), (e), and
(h)] Mott-insulating central region, with μ0=h ¼ 624 ð22Þ Hz and kBT=U ¼ 0.09ð1Þ; S=N ¼ 1.23ð6ÞkB. [(c), (f), and (i)] Band-
insulating center and Mott-insulating annular region, with μ0=h ¼ 1450 ð40Þ Hz and kBT=U ¼ 0.18ð2Þ; S=N ¼ 0.99ð6ÞkB. The
profiles were fitted to numerical linked cluster expansion (NLCE) data with U=t̄ ¼ 3 for (a), (d), and (g) and to high-temperature series
expansion (HTSE) for (b), (e), and (h). For (c), (f), and (i), profiles were fitted to NLCE data with U=t̄ ¼ 21, shown in solid.

FIG. 3. Heating of
Mottandband insulators.
(a) Site-resolved images,
(b) density profiles, and
(c) variances for temper-
atureskBT=U¼0.18ð2Þ,
0.22(3),0.31(4),0.55(8)
(left to right) at fixed
U=8t̄ ¼ 2.6ð1Þ andω ¼
2π × 183 ð3Þ Hz, with
fitted curves fromHTSE
(solid). [(d) and (e)]
Radially averaged ob-
served filling and vari-
ance, respectively, for
all four temperature
values as a function of
chemical potential, calcu-
lated from the fitted
global chemical potential.
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variance is suppressed, indicating a band-insulating region
with two atoms per site. Because of the varying local
chemical potential across the trap, a surrounding Mott-
insulating annular region is also visible. Themetallic regions
that border the insulating regions are clearly evidenced by the
increased variance.
To characterize the atomic clouds, we fit the radially

averaged parity-projected density ndet to the equation of
state of the spin-balanced Hubbard model obtained either
through NLCE data [31], for U=8t̄ ¼ 0.33ð4Þ; 2.6ð1Þ, or
from the HTSE in t̄=kBT [32], for U=8t̄ ¼ 12.3ð8Þ.
From these fits, we extract temperatures of kBT=U ¼
0.55ð9Þ; 0.09ð1Þ; 0.18ð2Þ for the three configurations
shown in Figs. 2(a), 2(d), and 2(g); 2(b), 2(e), and 2(h);
and 2(c), 2(f), and 2(i), respectively. From the fits, we
deduce the local entropy per site, shown in Figs. 2(g)–2(i),
and the trap-averaged entropy per particle. These curves
illustrate redistribution of entropy between the different
regions of the trap. There is a local reduction of entropy in
the Mott and band-insulating regions, with a corresponding
increase of entropy in the metallic rings. Additionally, we
observe that the average entropy per particle is 1.7(1)kB,
1.23(6)kB, and 0.99(6)kB for the three configurations.
In order to explore the effects of temperature, we heat

samples at U=8t̄ ¼ 2.6ð1Þ and confinement of ω ¼ 2π ×
181 ð3Þ Hz by varying the hold time in the lattice up to 3 s. In
Fig. 3(a), we show the reconstructed site occupations for four
temperatures from kBT=U ¼ 0.18ð2Þ to 0.55(8). As the
temperature increases, singly occupied sites are created in
the band-insulating region as kBT approaches μ0, while
double occupancies and holes appear in the Mott-insulating
region as kBT approaches U. The radially averaged density
profiles, shown in Fig. 3(b), are fitted with HTSE to extract
the temperature and chemical potential. In Fig. 3(c), we show
the measured variance for the samples from Fig. 3(a). The
variance is suppressed in insulating regions at low temper-
atures, but approaches 0.25 throughout the sample at high
temperatures. To extract trap-independent properties, we use
the fitted value of μ0 and the trap frequency ω to determine
the local chemical potential μ ¼ μ0 − 1

2
mω2d2i a

2. Under the
LDA, the local properties are equivalent to those of a
homogeneous system at the same chemical potential.
Radial profiles can then be converted to profiles with varying
μ=U, as shown in Figs. 3(d) and 3(e) for the site occupation
and variance, respectively.
While the detected site occupation ndet does not allow one

to obtain the total density hn̂↓ þ n̂↑i or the double occupancy
hn̂↓n̂↑i separately, it directly gives the local moment
hm2

zi ¼ hðn̂↑ − n̂↓Þ2i ¼ hn̂↑ þ n̂↓ − 2n̂↑n̂↓i ¼ hn̂deti [33].
In the strong coupling limit U ≫ t and at half filling, as
the temperature is lowered below ∼U, the local moment is
expected to approach unity as the system enters the Mott-
insulating state. At even lower temperatures, near the
superexchange scale t2=U, the moment is expected to
slightly decrease, signaling reduced localization as magnetic

interactions become important [34]. The moment, directly
given by ndet, can thus show signatures of superexchange,
albeit at temperatures lower than those accessed in the current
work. In Fig. 4, we show the local moment at half filling
(μ ¼ U=2) as a function of temperatures for the same
parameters as in Fig. 3. To determine the half-filling point,
the detected occupation is fitted to HTSE in the outer regions
of the sample where ndet < 0.25, from which we extract the
temperature and global chemical potential μ0. At half filling,
a measurement of the local moment also yields the double
occupancy via hn̂↑n̂↓i ¼ ð1 − hm2

ziÞ=2. We also show the
measured temperature dependence of the moment at
μ ¼ −U=4. Note that hm2

zi is symmetric about μ ¼ U=2,
a consequence of the particle-hole symmetry of the Fermi-
Hubbard model on a bipartite lattice. Thus, the behavior of
the moment versus temperature at μ ¼ −U=4 is representa-
tive of the metallic regions both below and above half filling.
After correction for imaging fidelity, the data for both values
of μ are consistent with the NLCE predictions.
In summary, we have directly observed with single-site

resolution the Mott-insulating, band-insulating, and met-
allic states of the 2D Hubbard model using fermionic 40K in
an optical lattice. We measure entropies as low as
0.99ð6ÞkB per particle, indicating that short-range antifer-
romagnetic spin correlations should be present [31,35,36].
The Mott insulator provides a well-controlled initial
state for further studies, such as the properties of one-
dimensional Hubbard chains and dynamics of magnetic

FIG. 4. Local moment hm2
zi as a function of temperature at

U=8t̄ ¼ 2.6ð1Þ for μ=U ¼ 0.5 (red squares) and μ=U ¼ −0.25
(blue circles). The local moments are extracted from 117 samples.
For each sample, the temperature and global chemical potential
are determined by fitting to HTSE in the outer regions where
ndet < 0.25. NLCE data at U=t ¼ 21 with and without adjust-
ment for imaging fidelity are shown in solid and dotted lines,
respectively.
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polarons [8,37]. Additionally, the presence of 23Na in our
system, combined with the recently demonstrated creation
of ground state 23Na40K molecules [38], opens the pos-
sibility to study lattice models with long-range and aniso-
tropic interactions at the single-site level.
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