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The theory of tokamak stability to nonlinear “ballooning” displacements of elliptical magnetic flux tubes
is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but
not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear
stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube
displacement can be of the order of the pressure gradient scale length. Plasma transport from these
displaced flux tubes may explain the rapid loss of confinement in some experiments.
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Fast magnetohydrodynamic (MHD) instabilities limit the
pressure (beta) in magnetically confined fusion plasmas.
The limit is observed to be one of two kinds, either a soft
limit where the instability limits the pressure to a critical
profile or a hard limit where the instability rapidly destroys
confinement and releases enough stored energy to take the
system well below the critical pressure profile. Sometimes
the instability terminates the discharge entirely [1]. There
are also two kinds of MHD instability: large scale kink
instabilities and small scale, field aligned ballooning
instabilities [2]. It is often supposed that ballooning
instabilities provide a soft limit, especially near the plasma
edge [3]. Some observations of the pressure profile evo-
lution in the pedestal, a steep pressure gradient region at the
edge of some tokamak discharges, are consistent with a soft
ballooning limit [4,5]. However, edge-localized modes
(ELMs), instabilities of the pedestal, cause an explosive
eruption of multiple fine scale flux tubes and a rapid loss of
edge confinement [6]. This suggests that ballooning insta-
bilities can sometimes provide a hard limit to edge confine-
ment. When then is the ballooning beta limit hard and when
is it soft?
In this Letter we provide a general theory of the nonlinear

stability of ballooning modes. We argue that without dis-
sipation the nonlinear consequence of ballooning modes is
the eruption of isolated elliptical magnetic flux tubes.
Certainly such elliptical erupting tubes are the long time
limit of the weakly nonlinear theory developed in [7,8].
The explosive dynamics and metastability of such tubes in
one-dimensional line tied gravitational equilibria were stud-
ied in [9].Here,we calculate the dynamics and final saturated
states of erupting flux tubes, first in general [Eqs. (2) and (3)]
and then (as an example) in a simple large aspect ratio

tokamak with nearly circular flux surfaces. The equilibrium
contains a region of steep pressure gradient, a transport
barrier, where the pressure gradient is of the order of the
critical gradient for linear stability. We adopt this equilibrium
since it yields a simple nonlinear generalization of the s-α
linear ballooningmodel of [10] and so illustrates the nonlinear
dynamics. Specifically, it illustrates the metastability of some
linearly stable equilibria. Metastability is a phenomenon
encountered in many physical systems and indeed it is clear
from this Letter and fromRef. [9] thatmany confined plasmas
are also metastable. However, despite its importance, meta-
stability in confined plasmas is largely unexplored.
Equilibrium and equations.—We represent the tokamak

equilibrium in flux coordinates: ϕ is the toroidal angle, r is
a radiuslike variable that is constant on a magnetic surface,
and θ is a poloidal angle chosen to make the field lines
“straight”—see [11,12]. Thus, we choose rð∇r × ∇θÞ ¼
R0∇ϕ, where R0 is the cylindrical radius of the magnetic
axis. Then

B0 ¼ −B̄0R0ffðrÞ∇r × ∇Sg; ð1Þ
where B̄0 is a constant, S ¼ ϕ − qðrÞ½θ − θ0ðrÞ�, qðrÞ is
the safety factor, and θ0ðrÞ is an arbitrary function of r.
We assume the tokamak has a large aspect ratio (i.e.,
r=R0 ¼ ϵ ≪ 1) and low beta p0ðrÞ ∼Oðϵ2B̄2

0Þ. The
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FIG. 1. Profile of safety factor q (solid line, left-hand axis) and
normalized pressure βα=a ¼ 2μ0R0q2p0ðrÞ=B2

0a (dashed line,
right-hand axis) for the internal transport barrier (where a is the
plasma minor radius).
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transport barrier is a narrow region of steep pressure gradient
[rp0

0 ∼Oðp0=ϵÞ] of width ∼ϵr centered around a surface
r ¼ rp; see Fig. 1. The equilibrium is obtained from an
expansion in ϵ (as in [12]).
We consider a highly elliptical flux tube of widths Δr

and ΔS with r ≫ Δr ∼ δ2 ≫ ΔS ∼ δ1 whose center orig-
inates in the field line on the flux surface labeled by r0 and
S ¼ 0. The field lines in the tube are displaced along the
surface S ¼ 0 with shape given by r ¼ rðθ; r0; tÞ ¼
ξþ r0, where rðt ¼ 0Þ ¼ r0; see Fig. 2.
In principle, we could consider motion along any S

surface defined by any function θ0ðrÞ; we restrict ourselves
to the choice θ0ðrÞ ¼ 0. This is the choice for the most
linearly unstable motions. The tube wraps around the torus
many times and we consider rðθ; r0; tÞ on the domain
−∞ < θ < ∞. We ignore the fact that the S ¼ 0 surface
intersects itself as θ increases since we assume that the
perturbations are sufficiently localized in θ to avoid self
intersection of the flux tube. The plasma is taken to be
perfectly conducting—i.e., the plasma is frozen to the field.
Thus, the field lines must remain attached to their original
surfaces and therefore r ¼ rðθ; r0; tÞ → r0 as jθj → ∞. The
derivation of the equation of motion here follows the
treatment for a general equilibrium of a magnetically
confined plasma in Appendix B of [13]. The exact shape
of the tube is not needed but we do assume that δ1 is
sufficiently small that we can treat the field and pressure
outside the tube as unperturbed.
We denote the field inside the tube to be

Bin ¼ Binðθ; r0; tÞ. The motion of the tube is assumed to
be slow compared to the (sound) time to equalize pressure
along the tube and thus the pressure in the tube is
pinðθ; r0; tÞ ¼ p0ðr0Þ. The pressure forces across the tube
in the direction of ∇S are formally large (∼p0=δ1) and
therefore the total pressure inside the tube must equal the
total pressure just outside the tube. Thus,

B2
inðθ; r0; tÞ ¼ B2

0ðθ; rÞ þ 2μ0½p0ðrÞ − p0ðr0Þ�; ð2Þ

where the small perturbations of the field and pressure
outside the tube are neglected [this requires 1 ≫ ðξ2=R2

0Þðδ21=δ22Þ]. The ideal MHD force F⊥ pushing the field line
along S in the direction e⊥ ¼ ð∇S ×B0Þ=B0 is

F⊥ ¼ 1

μ0

�
Bin · ∇Bin − ∇

�
B2
in

2
þ μ0pin

��
· e⊥

¼ 1

μ0
½Bin · ∇Bin −B0 · ∇B0� · e⊥: ð3Þ

The second expression follows from Eq. (2) and the
unperturbed equilibrium relation ∇ðB2

0=2þ μ0p0Þ ¼
B0 · ∇B0. Equation (3) is valid when the tube is sufficiently
elliptical so that δ21 ≪ δ32=ξ. The expression in Eq. (3) is a
generalized form of Archimedes’ principle where the net
force is the curvature force of the tube minus the curvature
force of the tube it has displaced. Equations (2) and (3)
express the physics determining nonlinear ballooning—the
rest of the theory is geometry. By requiring that Bin lie on
S, F⊥ can in general be expressed in terms of rðθ; r0; tÞ and
its first and second derivatives with respect to θ at constant
r0; see Appendix B of [13]. When r − r0 ¼ ξ is infinitesi-
mal F⊥ reduces to the familiar linear ballooning operator of
[2]—see [13]. Note that the nonlinear force on each
field line is determined independently. The equilibrium
states of the field line satisfy F⊥(rðθ; r0; tÞ) ¼ 0. We model
the dynamics of the tube by a simple drag evolution
with v ¼ ve⊥, F⊥ ¼ νv · e⊥, and v ¼ −R0fð∂r=∂tÞ. The
actual dynamics of the tube are clearly more complicated
but the equilibrium states must, of course, satisfy
F⊥(rðθ; r0; tÞ) ¼ 0. After some algebra we obtain from
Eq. (3) the evolution equation for each field line ½rðθ; r0; tÞ�
in our simple large aspect ratio model,

ν0
�∂r
∂t
�
½1þ ðα sin θ − sθÞ2� ¼ F0⊥ðrðθ; r0; tÞÞ

¼ ðβαðr0Þ − βαðrÞÞ½cos θ þ sin θðsθ − α sin θÞ�

þ
� ∂
∂θ

�
r0

�
½1þ ðα sin θ − sθÞ2�

�∂r
∂θ

�
r0

�

−
1

2

�∂r
∂θ

�
2

r0

� ∂
∂r

�
θ

ðα sin θ − sθÞ2; ð4Þ

where ν0 ¼ νμ0ðq2R2
0=B

2
0Þ, F0⊥ ¼F⊥μ0ðqR2

0r=B
2
0Þ, s¼

rq0ðrÞ=qðrÞ, βαðrÞ ¼ 2μ0R0q2p0ðrÞ=B̄2
0, and αðrÞ ¼

−dβαðrÞ=dr. Equation (4) is a nonlinear generalization
of the s-α model of [10]. We define the energy functional,
Eðr; r0Þ ¼

R
∞
−∞ Bin · dr, where the integral is taken along

the perturbed field line [13]. Note that Eðr; r0Þ is formally
infinite but we can make it finite by subtracting the
unperturbed value ΔEðr; r0Þ ¼ Eðr; r0Þ − Eðr0; r0Þ. Drag
evolution takes the flux tube to minima of the energy
ΔEðr; r0Þ; see [13]. The equilibrium states are stationary
points of the variation of ΔEðr; r0Þ with respect to
rðθ; r0; tÞ at fixed r0 [13]. The relative energy for our
model is

FIG. 2. Elliptical (orange) flux tube with Δr ∼ δ2 ≫ ΔS ∼ δ1
sliding along (blue) surface S ¼ 0 parting surrounding (black)
field lines. Note that the tube’s displacement, ξ ¼ r − r0, is larger
on the large R part of the flux surfaces—the tube balloons. The
magnetic shear ðs ¼ rq0=qÞ causes the twist and narrowing of the
tube on the inside.
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ΔEðr; r0Þ ¼
Z

∞

−∞
dθ

�
1

2

�∂r
∂θ

�
2

r0

½1þ ðα sin θ − sθÞ2�
�

−
Z

∞

−∞
dθ½Aðr; r0Þ cos θ

þ Bðr; r0Þθ sin θ − Cðr; r0Þsin2θ�; ð5Þ

where the integral is at fixed r0 and the energy coefficients
are Aðr;r0Þ¼

R
r
r0
½βαðr0Þ−βαðr0Þ�dr0, Bðr;r0Þ¼

R
r
r0
½βαðr0Þ−

βαðr0Þ�sðr0Þdr0, and Cðr; r0Þ ¼ 1
2
½βαðrÞ − βαðr0Þ�2.

A linearly stable case.—We investigate a case where we
choose profiles of αðrÞ and sðrÞ that yield an internal
transport barrier: αðrÞ ¼ α0sech2½ðr − rαÞ=ϵp� and sðrÞ ¼
ðs0 þ s1Þ=2þ ½ðs1 − s0Þ=2� tanh ½ðr − rsÞ=ϵp�. Linearizing
Eq. (4) with r ¼ ξðθ; r0; tÞ þ r0 with ξα0; ξs0 ≪ 1 we obtain
growing eigenmodes if the local values of αðr0Þ and sðr0Þ lie
in the unstable region of the s-α diagram [10]—see Fig. 3.

We take an initial equilibrium with no linearly unstable field
lines with α0 ¼ 0.28, s0 ¼ 0.05, s1 ¼ 0.3, ra ¼ 0.7,
rs ¼ 0.72, and ϵp ¼ 0.1. As r0 is increased the equilibrium
traces out the dash-dotted line in Fig. 3 in the direction
indicated by the arrows. Clearly no surfaces (field lines) are
linearly unstable and all infinitesimal perturbations decay.
Nonetheless finite perturbations can grow. For example, in
Fig. 4 we show the drag evolution [r ¼ rðθ; r0; tÞ using
Eq. (4)] of the field line r0 ¼ 0.61 with two finite initial
displacements. The larger initial displacement evolves to a
finite displaced stable equilibrium. The smaller initial
displacement decays to the linearly stable unperturbed state
r ¼ r0 (Fig. 4). There are three equilibrium states of this
field line that can be found by solving the equation F0⊥ ¼ 0

[see Eq. (4)] by a simple shooting method. These are the
linearly stable unperturbed state r ¼ r0 with relative energy
ΔE ¼ 0; an unstable equilibrium state r ¼ rcritðθ; r0Þ
between the two initial conditions shown at t ¼ 0 in
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FIG. 3. s-α diagram showing the linear stability boundary [10].
The equilibrium here follows the trajectory of the dash-dotted line
as r0 is increased. The profile is linearly stable.
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FIG. 4. The upper plot shows the shape of the field line at
different times, r ¼ rðθ; r0; tÞ for r0 ¼ 0.61. The solid lines start
with the initial condition just greater than the unstable equilib-
rium state rcrit and evolve upwards. The dash-dotted lines start
with the initial condition just less than the unstable equilibrium
state rcrit and evolve downwards. The final state of this evolution
is the unperturbed field line. The lower plot shows the time
evolution of the maximum value along the field line
rmaxðtÞ ¼ rð0; r0; tÞ. Again, the solid (dash-dotted) line starts
with the initial condition just greater (just less) than the unstable
equilibrium state rcrit.
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FIG. 5. Relative energy ΔE evaluated from Eq. (6) for three
equilibrium solutions F0⊥ ¼ 0 of Eq. (4) in the region
0.58 < r0 < 0.68. The dotted line is the unperturbed energy,
the dashed line is the unstable displaced equilibrium energy
[ΔEðrcrit; r0Þ], and the solid line is the displaced stable equilib-
rium energy [ΔEðrsat; r0Þ]. The stable displaced equilibrium is the
lowest energy state for 0.593 < r0 < 0.679.
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FIG. 6. A measure of the ballooning displacement Δ ¼
½βαðr0Þ − βαðrmaxÞ�=ð2ϵpα0Þ for the two perturbed equilibrium
states (left-hand axis). Field lines in the displaced lower energy
equilibrium can cross a substantial fraction of the pressure profile
(solid line)—for example, the r0 ¼ 0.61 field line balloons across
about 73% of the pressure profile. The unstable equilibrium is
shown by the dash-dotted line. The rmax for the saturated field
lines is shown as the dashed line (right-hand axis) and the rmax
for the unstable equilibria is shown as the dotted line. Note that
for 0.56 < r0 < 0.68 the field lines “overtake,” i.e., rmaxðr10Þ >
rmaxðr20Þ if r10 < r20.
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Fig. 4 with ΔE ¼ 1.09 × 10−4; and the stable equilibrium
state r ¼ rsatðθ; r0Þ that is the final state of the larger
perturbation with ΔE ¼ −0.8 × 10−4. Clearly the unper-
turbed state is metastable since a finite perturbation triggers
evolution to a lower energy state.
Not all the field lines have lower energy equilibrium

states. We have examined the F0⊥ ¼ 0 solutions for
0.4 < r0 < 0.8. For 0.474 < r0 < 0.680 there are three
equilibrium solutions but outside this region the only
equilibrium solution is the unperturbed state. All displaced
solutions are even in θ and have their maximum displace-
ment at θ ¼ 0, which we denote rmax. In Fig. 5 we
plot ΔE for 0.58 < r0 < 0.68 and in Fig. 6 we plot both
Δ ¼ ½βαðr0Þ − βαðrmaxÞ�=ð2ϵpα0Þ (solid and dash-dotted
lines, left-hand axis) and rmax (dashed and dotted lines,
right-hand axis). Δ measures the fraction of pressure
profile crossed by the ballooning flux tube. Clearly for
0.593 < r0 < 0.678 the lowest energy state is a displaced
state (the solid black line in Fig. 5)—these states can be
reached by giving the field line a perturbation with more
than the energy of the unstable positive energy equilibrium
state (the dashed line in Fig. 5).
We varied α0 for this case; for α0 ≤ 0.269 there are no

energetically favorable saturated states, and for α0 ≥ 0.306
some field lines are linearly unstable. It is not, however,
the linearly unstable field lines that produce the saturated
field lines with the largest displacement. These are meta-
stable field lines with r0 ≈ 0.6. For a linearly unstable field
line there are two lower energy saturated states, one
displaced outwards and one inwards.
Discussion.—In this Letter we have formulated a non-

linear theory of ballooning modes as the eruption of
elliptical flux tubes. The force in the direction of motion
of the flux tube is given by combining pressure balance
across the elliptical tube [Eq. (2)] with a generalized
Archimedes principle [Eq. (3)]. We illustrate our theory
with the drag evolution of flux tubes in a large aspect ratio
circular flux surface equilibrium with an internal transport
barrier—a nonlinear s-α model [10]. This model reveals
remarkable physics. Even below the linear stability thresh-
old there can be lower energy saturated flux tubes with
finite displacement—we have found such states; see Fig. 5.
The flux tubes have been modeled with a perfectly

conducting plasma. This is a reasonable assumption since
theeruption is likely to takeplaceona fast time scale.Once the
flux tubes have reached their saturated states then other,
slower time scale processes become important. For example,
resistive field line reconnection is likely to occur at largeθ as it
does in resistive ballooningmodes [14]. There is also likely to
be cross field transportofheat from the tube to the surrounding
plasma around rmax given the large gradient of temperature.
This would effectively connect the high pressure region to the
low pressure region via a conduit (“hosepipe”) along the flux
tube—perhaps causing rapid loss of confinement locally. The
balance of the dissipative processes determines the longer

time scale evolution of the flux tube and ultimately how it
disconnects from, or returns to, its original location.
ELMs are a possible application of the ideas in this

Letter. However, we leave this topic to a future publication.
We instead note that the explosive eruption of ballooning
modes has been observed in TFTR shots with internal
transport barriers [15]. A slowly evolving n ¼ 1 kink mode
arises first and then a toroidally localized ballooning mode
(with n ∼ 10–20) appears. These ballooning modes even-
tually disrupt the plasma—a hard limit. The tubes could be
destabilized from a metastable state at the tip of the kink
mode by finite noise or by passing through linear marginal
stability. We have demonstrated with the model above that
flux tubes can erupt into finitely displaced states effectively
connecting plasma inside the transport barrier to outside the
barrier. We speculate that the ballooning mode provides a
hard limit when and only when there are finitely displaced
lower energy saturated states. However, there is, clearly
much to fathom before we can claim to fully understand the
hard and soft limits of ballooning modes.
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