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The transition from quantum to classical physics remains an intensely debated question even though it
has been investigated for more than a century. Further clarifications could be obtained by preparing
macroscopic objects in spatial quantum superpositions and proposals for generating such states for
nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we
introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative
state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical
element and drive it towards the ground state, which shows the desired spatial superposition, via
optomechanical sideband cooling. We propose a specific implementation based on a superconducting
circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a
method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects
for testing collapse models for the quantum to classical transition.

DOI: 10.1103/PhysRevLett.116.233604

A fundamental open question in modern quantum
mechanics is how classical physics arises from it as one
moves from the microscopic to the macroscopic world.
Decoherence is arguably the strongest candidate for the
process inducing such a transition [1]. There are, however,
theories which explain this transition via so-called collapse
or spontaneous reduction models and attribute it to other
sources, e.g., spontaneous localization [2], quantum [3] or
classical [4] gravity, or uncertainty relations on the space-
time continuum [5]. Proposals for testing such models exist
[6], and most of them require the preparation of massive
objects either in superposition [7–9] or entangled states
[10,11] (the latter also have applications for quantum
information processing [12–14]). Several works have
emerged proposing protocols for the preparation of such
states, especially in the context of optomechanics, either
probabilistically [11,15,16] or in the transient regime
[17–22]. Mechanical elements, however, are exposed to
high decoherence rates induced by their finite temperature
environments, which demand fast, yet accurate, state
preparation and certification methods [23]. With direct
full-state tomography being quite challenging, some indi-
rect reconstruction methods have been proposed [24–26].
Another way to meet the challenge of large mechanical

decoherence is to generate the desired states dissipatively,
that is, as robust and long-lived steady states. Here we
propose a method for the dissipative preparation of a
mechanical element in a superposition of two spatially
separated states, together with an efficient way to verify
such preparation. Our proposal, therefore, paves the way

towards experimental tests of collapse models for the
quantum to classical transition.
We here consider state-of-the-art superconducting cir-

cuits and electromechanical devices to show that a highly
controllable and tunable double-well potential can be
engineered electrostatically, while the mechanical motion
of the trapped element can be cooled to its ground state with
high fidelity. Because of the shape of the potential, this
ground state is a spatial-superposition state. We show how
to verify its preparation via population measurements on a
single qubit and discuss the avenues this opens for testing
collapse models for the quantum to classical transition.
Model.—We consider the motion of a mechanical

element with effective mass m moving in a symmetric
double-well (DW) potential as described in terms of its
position x̂ and momentum p̂ by the Hamiltonian

ĤDW ¼ p̂2

2m
−
ν

2
x̂2 þ β

4
x̂4: ð1Þ

Here, the double-well potential results from a combination
of an inverted parabola generating a potential barrier at the
origin and an attractive quartic potential that dominates at
large deflections. We describe the physical origin of the
parameters ν and β for our proposed implementation below
and denote the eigenstates and eigenvalues of ĤDW by
ĤDWjni ¼ Enjni (n ¼ 0; 1; 2;…).
The potential of Eq. (1) together with its eigenvalues is

sketched in Fig. 1. For states with energies below the peak
of the central barrier, tunneling between the wells breaks
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the left or right degeneracy, and the eigenstates of the
system are formed by symmetric and antisymmetric super-
positions of states localized in the two individual wells.
These localized states are well approximated by eigenstates
of harmonic potentials with frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ν=m

p
and

minima at the well positions �x0 ¼ � ffiffiffiffiffiffiffiffi
ν=β

p
. The two

lowest energy eigenstates of the double-well potential are
thus even and odd cat states, respectively. Preparing the
system in either of them results in a quantum superposition
of two macroscopically distinguishable states of a massive
object, provided that x0 exceeds the zero-point motion
xzpm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2ω0m
p

associated to the ground state of each
well [27].
We now show how optomechanical sideband cooling

can be used for ground state preparation in such a highly
nonlinear potential. Since the coupling to a thermal
environment ensures that the populations of the double-
well eigenstates decay exponentially with the energy, it
would in principle be sufficient to transfer all population of
the first excited state to the ground state. In practice,
however, it is challenging to generate a sufficient cooling
rate for the lowest transition. The (linearized) coupling
between the mechanical oscillator and a cavity electro-
magnetic mode with annihilation operator â and frequency
ωc takes the form ℏgx̂ðâþ â†Þ, where g ¼ g0

ffiffiffiffiffi
n̄c

p
, with

g0 ¼ ð∂ωc=∂xÞx¼0 the bare optomechanical coupling and
n̄c the photon number induced in the cavity by an external
field driving it at a frequency ωcjx¼0 þ Δ that allows us to
control g [28,29]. Efficient ground state cooling requires
essentially three conditions: (i) the detuning Δ of the
external driving field with respect to the cavity mode
has to be chosen as Δ ≈ −δ10 ≡ ðE1 − E0Þ=ℏ, with (ii) a
photon relaxation rate κ satisfying δ10 ≫ κ ≫ g10, while
(iii) keeping the cooperativity g210=κγ10N̄ðδ10Þ large enough
(here g10 ¼ gh1jx̂j0i is the optomechanical coupling rate
for the lowest mechanical transition, γ10 is the relaxation

rate of the transition, and N̄ðΩÞ are the thermal environ-
mental excitations at the corresponding frequency, see
below). Yet, as δ10 decreases exponentially with the
separation between the wells, the cooperativities and cool-
ing rates generated in this way would be rather limited.
To obtain more efficient cooling, the mechanical system

can be coupled to a set of cavity modes with relaxation
rates κj, each performing sideband cooling in one or more
transitions as illustrated in Fig. 1. As we show numerically,
this arrangement cools down the mechanical mode close to
its ground state even for moderate relaxation rates κj ≲ δmn,
where δmn ¼ ðEm − EnÞ=ℏ > 0 refers to the transition we
intend to cool with mode j. For realizations where all
employed cavity modes have comparable linewidths κj, as
is the case in most settings, the performance of this cooling
concept improves with the number of modes. This may,
however, face practical limitations (see below). We remark
that our approach does not only apply to model (1) but to
any nonlinear potential with a nondegenerate ground state.
In the following, we will describe the system via a master

equation for its state ρ̂. Whereas the dissipation of photons
can be treated in the common way, the nonlinearity of the
mechanical motion requires special attention. As a master
equation is based on a perturbative expansion in system-
environment couplings, it here leads to nonunitary terms of
Lindblad form for each transition between eigenstates of
the mechanical mode [30–34], since each transition couples
with a different strength to the environment and experi-
ences a different density of states. Using an adequate
“microscopic” model for the system-environment interac-
tion, we thus derive the master equation [34],

∂tρ̂ ¼ 1

iℏ
½Ĥ; ρ̂� þ κ

2

X

j

Dâj ½ρ̂� þ
1

2
Lm½ρ̂�; ð2Þ

where Ĥ ¼ ĤDW þP
j½−ℏΔjâj†âj þ ℏgjðâj þ âj†Þx̂� is

the full Hamiltonian and DÔ½·� ¼ 2Ôð·ÞÔ† − Ô†Ôð·Þ −
ð·ÞÔ†Ô a standard Lindblad superoperator. Lm½·� ¼
½x̂; ð·ÞÂ† − Âð·Þ� is the mechanical dissipator [34] with

Â ¼
X

m>n

γmnkmn½N̄ðδmnÞjmihnj þ ½N̄ðδmnÞ þ 1�jnihmj�;

where γmn ¼ δmn=Q is the jmi → jni decay rate and
N̄ðΩÞ ¼ ½expðℏΩ=kBTÞ − 1�−1 the reservoir occupation
at temperature T and frequency Ω. Q is the quality
factor of harmonic mechanical oscillations and kmn ¼
xmnð2mω=ℏÞ are the position matrix elements normalized
to the zero-point position variance associated to the original
harmonic oscillations, see below. We now turn to propose a
specific implementation of these ideas, for which a realistic
choice of parameters allows us to cool the mechanical mode
to the ground state showing the desired superposition.

FIG. 1. Conceptual scheme of our proposal. A mechanical
element moving in a shallow double-well potential with only two
possible states below the central barrier is coupled to several
electromagnetic modes capable of cooling its different transi-
tions. Whereas the ground state of this potential is a spatial
superposition of left and right deflections, j0i ¼ ðjLi þ jRiÞ= ffiffiffi

2
p

,
without sideband cooling on several transitions only the classical
mixture ðjLihLj þ jRihRjÞ=2 would be accessible.

PRL 116, 233604 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

233604-2



Implementation.—To implement our ideas, we here
propose an architecture based on state-of-the-art super-
conducting circuits and electromechanical technology, see
Fig. 2 and Ref. [42] for a similar device. In this proposal,
the mechanical degree of freedom is realized by the
drum mode of a thin circularly clamped mechanical layer
(membrane) of radius a, which is confined in a double-well
potential generated via the electrostatic field of a tip
electrode located above its center. The cavity modes, in
turn, are the resonance modes of a superconducting
resonator with a disk-shaped end placed below the mem-
brane such that plate and membrane form a capacitance.
The dependence of its capacitance on the plate-to-
membrane separation then provides the desired optome-
chanical interaction. An additional superconducting qubit
coupled to the microwave resonator will allow us to read
out the mechanical motion.
Let us now elaborate on the physics behind this

scenario. In [34] we provide a detailed derivation of the
Hamiltonian describing the membrane. The fundamental
flexural mode with position x̂ and momentum p̂ is found
to be well isolated from the rest of the mechanical modes
and, besides a harmonic restoring potential with frequency
ω, it is subject to a nonlinear potential of geometric origin
that is, to leading order, well described by a Duffing
nonlinearity of the form βx̂4=4. The total elastic potential
V̂m ¼ mω2x̂2=2þ βx̂4=4 can be transformed into a double
well of the form (1) by adding a “softening” force which
generates an additional potential with the shape of an
inverted parabola that exceeds the harmonic confinement
in V̂m. A feasible way to controllably generate such a force
on the membrane consists of applying an inhomogeneous
electrostatic field generated via a tip electrode situated
close to its center, see Fig. 2. The electrostatic energy

of the membrane’s fundamental mode can be expanded
in its deflection, V̂es ¼

P∞
j¼1 αjx̂

j, with coefficients αj¼
πhϵ0

R
a
0 rdr∂j

zE2
zðr;z¼z0Þψ j

0ðrÞ [34]. Here, ψ0 is the pro-
file of the fundamental mode, Ez is the static electric-field
component perpendicular to the mechanical layer,
and h is the membrane’s thickness at rest in the z ¼ z0
plane (z ¼ 0 is taken at the superconducting disk below
the membrane). α1 shifts the equilibrium position of the
mechanical mode and can be used as an additional control
knob for the coupling to the electromagnetic modes [43].
α2 can be made negative, therefore generating the soft-
ening force that leads to the double-well potential. Higher
orders are shown to be negligible [34]. Hence, we see
that the combination of the geometrical and electrostatic
potentials, V̂m þ V̂es, gives rise to the desired double-well
potential for the membrane’s motion, with a parameter
ν ¼ 2jα2j −mω2 that can be tuned via the applied electro-
static fields.
As ideally suited candidates for the mechanical elements

we here consider monolayer graphene sheets, since
they have mechanical properties adapted to our needs. In
particular, their ultralow mass provides them with large
zero-point motion xzpm, while their large Young modulus
confers them large Duffing nonlinearity β. Such sheets have
already been studied as mechanical resonators [43–45].
Importantly, we note that the low conductivity of graphene
that has limited optomechanical cooling in these experi-
ments can be overcome by doping the membrane surface
with alkaline-metal atoms, as has been recently shown with
lithium-decorated graphene sheets [46], which possess
almost the same mechanical properties as standard mono-
layer graphene [47] but are superconducting [48].
We now turn to discuss the achievable fidelity for

preparing stationary spatial-superposition states with our
approach for parameters corresponding to this specific
implementation. The superconducting gap imposes a limit
to the number of high quality resonance modes in the
cavity. We thus consider three cavity modes coupled to
three proper mechanical transitions. Assuming the same
decay rate κ ¼ κj (j ¼ 1, 2, 3) for all these modes, we tune
the optomechanical couplings gj such that the probability
of being in the ground state of the double well is
maximized.
Results.—We consider a monolayer lithium-decorated

graphene sheet with radius a ¼ 1 μm, and thus
m≈5.7×10−16g, ω=2π ≈ 26MHz, and β≈ 5.7×1015 J=m4

[34,44]. The distance between the membrane and the disk-
shaped end of the cavity is taken to be z0 ¼ 100 nm. For a
cavity with fundamental resonance at 5 GHz we get the
“bare” optomechanical coupling rate G0 ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω

p
≈

2π × 10 Hz. As G0 scales linearly with the diameter of the
membrane [43], its small radius should be compensated by
an increased intracavity photon number n̄c. The electro-
static field is adjusted such that α2 ¼ −1.000 134ðmω2=2Þ,

FIG. 2. Scheme for the circuit quantum electromechanical
implementation of our proposal. The mechanical membrane
(green) alongside a disk electrode of a microwave cavity (red)
produces a position-dependent capacitance, and hence an opto-
mechanical coupling to the cavity modes. A superconducting
qubit (blue) is capacitively coupled to the cavity, and we employ
it for reading out the mechanical state. The double-well potential
is engineered on the membrane through an electrostatically fed
electrode tip placed above its center, which produces a softening
potential.
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which requires the application of a few hundred volts to an
antenna of a few hundred nanometers in size (similar to
the tip of a scanning tunneling microscope) located about
1 μm above the center of the membrane, and creates a
shallow double well with only two levels below the barrier,
cf. Fig. 1(a). This situation assures a reasonably large value
of δ10 (∼2π × 50 kHz) that allows us to access the required
resolved sideband regime.
We numerically [49] obtain the steady-state solution ρ̄

of the master equation (2), and analyze the ground state
population P00 ¼ h0jρ̄mj0i present in the reduced mechani-
cal state ρ̄m ¼ Trcavityfρ̄g. We consider three cavity modes
with decay rates κ ¼ 0.3δ10, detunings matching the
mechanical transitions j1i↔j0i, j3i↔j0i, and j2i↔j1i
(i.e., Δ1 ¼ −δ10, Δ2 ¼ −δ30, and Δ3 ¼ −δ21), and opti-
mized intracavity photon numbers n̄c1 ¼ 1200,
n̄c2 ¼ 1100, and n̄c3 ¼ 4000 [34]. Note that only transi-
tions with xmn ≠ 0 can be cooled, which requires m and n
to have different parity [34]. Assuming an environment
temperature of T ¼ 15 mK and a quality factorQ ¼ 106 of
the membrane in the original approximately harmonic
potential V̂m, we obtain P00 ≈ 0.79, meaning that the
mechanical resonator can be found in the desired spatial-
superposition state with ∼79% probability [Fig. 3(a)]. This
nonequilibrium steady state of the mechanical mode has a
spatial extent equal to the separation of the wells, whose
ratio to the zero-point motion amplitude in each well is
2x0=xzpm ≈ 6. It is reached in about 30 μs, which is orders
of magnitude shorter than the time scales of fluctuations in
the electrostatic control fields or microwave tones, see
Ref. [50]. Larger probabilities can be obtained by working
deeper in the resolved sideband regime and/or by employ-
ing more cavity modes.
To show how our proposal could be exploited for the

examination of unconventional sources of decoherence,
let us consider the bounds it imposes on the continuous

spontaneous localization (CSL) model [2,51,52] as the
most prominent collapse model. The CSL model is char-
acterized by a localization length usually taken to be
rCSL ¼ 100 nm, and a localization rate which is predicted
to be in the λCSL ¼ 10−8�2 Hz range [2]. In the limit where
the delocalization amplitude x0 is much smaller than rCSL,
the effect of the CSL model can be approximated by a
momentum diffusion term (CSL diffusion) of the form
−ðλCSLη=r2CSLÞ½x̂; ½x̂; ρ̂�� (η ≈ 1.2 × 1015 is a mass and
geometry dependent factor [53]) to be added to Eq. (2).
Our setup can be used to distinguish CSL diffusion from

conventional sources of noise by revealing the differences
between the steady states in the presence and absence of
CSL. To this end, one would proceed as follows. After a
sufficient experimental characterization of the setup, i.e., its
mechanical spectrum, optomechanical couplings, etc., one
can infer the mechanical damping in a sideband cooling
experiment, see, e.g., [54,55]. Whether only the assumed
mechanical damping or possibly also CSL is present in the
experiment can then be determined by measuring several
matrix elements of the mechanical steady state, see below
for a measurement method. To quantitatively analyze this
procedure we calculated the steady state μ̄m for a mechani-
cal quality factor Q in the presence of CSL and the steady
state ρ̄0m in the absence of CSL but with a mechanical
quality factor Q0 < Q, chosen such that the ground state
occupations are equal h0jρ̄0mj0i ¼ h0jμ̄mj0i. To mimic a
finite measurement precision σ, we only require that
jh0jρ̄0mj0i − h0jμ̄mj0ij ≲ σ. Crucially, the CSL diffusion
rate λCSLη=r2CSL is independent of the mechanical spectrum,
whereas the thermal damping rates γmn strongly depend on
the anharmonicity of the potential [34]. As a consequence,
the occupation probabilities of excited mechanical states
differ, i.e., jhjjρ̄0mjji − hjjμ̄mjjij ≫ σ for j ≥ 1 and suffi-
ciently large λCSL, indicating that the modified steady state
cannot be accounted for by a reduced quality and other
sources of decoherence need to be invoked. To quantify
these differences we use the distance between the distri-
butions of the mechanical occupations, D½μ̄m; ρ̄0m� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP∞

n¼0hnjðμ̄m − ρ̄0mÞjni2
p

, which is plotted as a function
of λCSL for three different measurement precisions
σ ¼ 10−6, 10−8, and 10−10 in Fig. 3(b).
Of course, the above discussion assumes that the

mechanical damping is of a specific form. Yet due to the
ample tunability of our setup, other forms of mechanical
damping may also be identified and distinguished from
CSL as long as they are not exactly in the form of a
momentum diffusion with a rate that is independent of the
potential.
State verification.—As the verification of the prepared

states will be of crucial importance in experiments, we now
introduce a strategy that allows us to determine all elements
Pmn of steady-state mechanical density matrix ρ̄m ¼P

mnPmnjmihnj, for which xmn ≠ 0, and the diagonal
elements Pnn, see [34] for the details. We exploit the fact

0123455
4

3
2

1
0

0

1

0.5

10-10 10-8 10-6 10-4
10-10

10-8

10-6

10-4(b)(a)

FIG. 3. (a) Absolute value of the lowest elements of the
mechanical steady-state density matrix when cooled by three
electromagnetic modes with optimal detunings and optomechan-
ical couplings as explained in the text. (b) Distance between the
population distributions of steady states ρ̄0m and μ̄m in the absence
or presence of CSL versus localization rate λCSL for measurement
precision σ ¼ 10−6 (circles), 10−8 (crosses), and 10−10 (squares).
The shaded area is the predicted range for λCSL [2,51,52].
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that our proposed architecture is naturally suited to strongly
couple the electromagnetic cavity to a superconducting
qubit with ground and excited states jgi and jei, and a
transition frequency that can be tuned in situ and in real
time (e.g., via a time dependent external magnetic flux for
transmon and phase qubits [56,57]). Measurements of the
qubit’s population will allow us to read out the mechanical
density matrix as follows.
Using an electromagnetic mode that is far detuned from

the qubit and mechanical transitions (dispersive regime),
one obtains an effective qubit-mechanical interaction of
the form x̂σ̂x, where σ̂x ¼ jgihej þ jeihgj. We show in [34]
that by initializing the qubit in the ground state, and tuning
its frequency to the jmi↔jni transition (m > n), the
probability of finding it in the excited state oscillates in
time with an amplitude proportional to the diagonal
element Pmm of the mechanical density matrix. On the
other hand, by initializing the qubit in the superposition
jgi þ eiφjei, the excitation probability becomes sensitive to
iðPmneiðϕmn−φÞ − c:c:Þ, where ϕmn is the phase of xmn,
hence allowing for the determination of the real and
imaginary parts of the off-diagonal elements Pmn via a
proper choice of φ.
Conclusion.—We have introduced a method for the

steady-state preparation of spatial quantum superposition
of a macroscopic object. Our proposal is based on cooling a
mechanical mode to the ground state of an engineered
double-well potential. We have put forward a specific
implementation based on current superconducting circuits
and electromechanical technology together with a method
for verifying the prepared mechanical state and discussed a
strategy for testing the validity of the CSL model. The
methods and specific proposal introduced in this Letter
pave the way towards the generation of macroscopic spatial
superpositions with available modern technologies, that
allow us to put bounds on collapse models and shed light on
the quantum-to-classical transition.
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