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The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering
problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand
total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high
energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of
electron scattering on molecules as it does for atoms.
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Molecular hydrogen H2 is the simplest two-electron
molecule. It is the most abundant molecule in the
Universe, particularly in interstellar space and in the atmos-
pheres of gas giants and the outermost planets in our Solar
System. It is present at the edge region of fusion devices and
widely used in plasma processing. A range of applications
require accurate and comprehensive electron-collision data
of molecular hydrogen in order to interpret spectroscopic
data andmodel astrophysical and technological plasmas.Yet,
this most fundamental few-body problem (e-H2 scattering)
has remained unsolved by theoretical methods, and a reliable
data set of collision cross sections is significantly lacking in
accuracy and range of scattering processes.
Experimentally, cross sections have been measured for

elastic scattering, vibrational and electronic excitations,
ionization, and dissociative processes of the ground state. A
number of articles have given an extensive overview of the
available experimental data and provided a recommended
set of cross sections [1–4]. The most recent recommended
data set [1] comes predominantly from experimental
measurements, which is problematic as theoretical and
experimental results vary significantly for electronic-
excitation cross sections. In addition, experimental uncer-
tainties in the measurement of electronic-excitation cross
sections are relatively large, generally 20%–25%.
For theorists the H2 molecule offers a unique testing

ground for the development of computational techniques.
With wave functions known to high accuracy for this
simple molecule the challenge is to treat the collision
dynamics accurately. A large number of theoretical meth-
ods have been applied to calculate electron collisions with
the H2 molecule. Among the most advanced and general
are calculations based on the Schwinger variational prin-
ciple [5], Kohn variational method [6], R-matrix (RM)
method [7–11], and time-dependent close-coupling method
(TDCC) [12]. Agreement between theory and experiment
for this most fundamental of all molecules is mixed at best.
To date, no theoretical method has been able to describe the

e-H2 collision processes consistently across all transitions
and incident electron energies.
There is of course a good reason for this; experience

gained over the last few decades in electron-atom scattering
suggests the importance of interchannel coupling between all
reaction channels including ionization. Another important
point is the complete account of polarization effects in the
scattering calculations. Within the close-coupling approach
these can be achieved by using a near-complete expansion of
both the discrete and continuum spectrum of the target. This
is the approach adopted in the ab initio convergent close-
coupling (CCC) method [13] and R-matrix with pseudos-
tates method (RMPS) [14]. A sufficiently large expansion
has to be used to accurately model the coupling between all
reaction channels and avoid the pseudoresonance problem.
This strategy is difficult to implement for molecules due to

the lack of spherical symmetry and reaction channels related
to molecular vibrations and rotations. Even within the Born-
Oppenheimer approximation and performing fixed-nuclei
calculations the close-coupling expansion for the electronic
part of the total wave function was often limited to just a few
low-lying states of the H2 molecule. For example, RM
calculations [7,8] had seven states, the Kohn variational
method [6] had four states, and the Schwinger multichannel
(SMC) calculations [5] had nine states. Such calculations are
limited to low energies and their accuracy (convergence) is
difficult to estimate. The notable exception is the molecular
formulation of the RMPS method [11] that used a set of
pseudostates tomodel the coupling to the ionization channels.
The total number of states was 41 in the biggest calculation;
however, only two states, the ground and first excited states,
were represented accurately. For othermolecules the situation
is similar to H2. Typically, electron-molecule calculations
include just a few states in the close-coupling expansion and
convergence studies are not performed.
This is very different than the electron-atom scattering

field, which has undergone considerable progress over the
last two decades. Large-scale close-coupling calculations
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are common, convergence studies are routinely conducted,
and results of calculations are increasingly being presented
with uncertainty estimates.
To enable large close-coupling calculations for molecular

targets the computational implementation is important. The
RMPS method as well as other techniques (Kohn and
Schwinger methods) use Slater and Gaussian orbitals.
This is helpful in dealing with the multicenter nature of
the molecular wave functions but at the same time they are
notorious for linear dependence problems for large expan-
sions. This limits the size of the calculations and the range of
their applicability. The CCC method makes use of the
Sturmian (Laguerre) basis that has no linear dependence
problems and allows us to conduct large-scale calculations.
Another important difference is the adoption of a single-
center description of the target molecule in the CCC
calculations. The advantage of the single-center approach
is the ability to evaluate all matrix elements in a straightfor-
ward manner and obtain H2 wave functions with better or
comparable accuracy than in previous calculations [5,7,11].
The present approach has already been applied to

positron scattering from the H2 molecule [15–17] and
electron scattering from H2

þ and its isotopologues [18,19].
In the latter case we conducted adiabatic-nuclei calcula-
tions, which allowed us to obtain collision data for
scattering from the hot (vibrationally excited) target. In
both cases we have explicitly demonstrated the conver-
gence of the calculations with respect to the number of the
target states in the close-coupling expansion and the size of
the projectile partial wave expansion.
Here, we apply the CCC method to the e-H2 scattering

problem. To demonstrate the accuracy of the method we
present the grand total, ionization, and elastic scattering
integrated cross sections. We also present differential cross
sections (DCS) for elastic scattering and excitations of a
number of low-lying states at 17.5 eV. This energy is just
above the H2 ionization threshold, where the electronic
excitations and ionization processes are dominant and their
correct account is crucial.
The CCC method is formulated in a spherical coordinate

system where the origin is set at the midpoint between the
two nuclei and the z axis is chosen to align along the
internuclei axis R (body frame). The body-frame total
scattering wave function is expanded in a set of target
states. This leads to coupled Lippmann-Schwinger equations
for the body-frame T matrix. These equations are solved in
momentum space via a K-matrix formulation, which enfor-
ces unitarity. In the case of homonuclear diatomic molecules
like H2 the partial wave expansion of the projectile wave
functions allows one to solve the Lippmann-Schwinger
equations per partial wave of total orbital angular momentum
projection M, spin S, and parity Π. Body-frame T-matrix
elements are then transformed into the lab frame using
standard techniques and cross sections are calculated [20].
For details of the molecular CCC method see Ref. [18].
The CCC method requires a set of target (pseudo)states

that should form a near-complete basis. The H2 target

electronic Hamiltonian Helec
T in the Born-Oppenheimer

approximation describes two electrons in the Coulomb
potential of two protons that are fixed at a distance R and is
defined as (atomic units are used throughout the Letter)

Helec
T ¼ Helec

1 þHelec
2 þ V12 þ 1=R; ð1Þ

where Helec
i is the one-electron electronic Hamiltonian of

H2
þ,

Helec
i ¼ −

1

2
∇2

i −
1

jri þ R
2
j −

1

jri − R
2
j ; ð2Þ

V12 is the electron-electron potential and 1=R is the
internuclear Coulomb repulsion term. The H2 electronic
target states are characterized by their orbital angular
momentum projection m, parity π, and spin s. The target
Hamiltonian (1) is diagonalized for each (m, π, s) term in a
set of antisymmetrized two-electron configurations, where
one-electron orbitals are represented by Laguerre basis
functions. We designateNl as the number of Laguerre basis
functions per orbital angular momentum l up to lmax.
The H2 structure model needs to allow for an expansion

over the two electrons (nlm, n0l0m0). The structure model
chosen here represents the “outer” electron (n0l0m0) by
one-electron orbitals. These one-electron orbitals were con-
structed from a Laguerre basis that had Nl ¼ 17 − l func-
tions up to lmax ¼ 3. Exponential falloffs were chosen such
that positive-energy pseudostates were open just above
ionization threshold and were αl¼0 ¼ 0.76, αl¼1 ¼ 0.765,
αl¼2 ¼ 0.79, and αl¼3 ¼ 0.85. The “inner” electron is
expanded by all n ≤ 2 one-electron orbitals. These orbitals
(n ≤ 2) are constructed from short-ranged Laguerre func-
tions that have exponential falloffs of αl ¼ 1.85. However,
the 1sσg orbital (n ¼ 1) is represented by a converged mole-
cular orbital of H2

þ that was constructed from a Laguerre
basis that had Nl¼60−l, αl ¼ 0.9 functions up to lmax ¼ 8.
This molecular orbital allows us to obtain an accurate
ionization threshold within a single-center expansion.
Diagonalizing the target Hamiltonian with the model

described above, N ¼ 491 target states were constructed
and used in the scattering calculations. Of these 491 states,
92 states were in the discrete spectrum and 399 states were
in the continuum. In Table I the two-electron energies and
vertical excitation energies at the equilibrium distance of
R0 ¼ 1.4a0 are presented for a number of low-lying states
and compared with highly accurate structure calculations
[21–26]. The length gauge oscillator strengths for the
X 1Σþ

g →B1Σþ
u and X 1Σþ

g →C1Πu transitions are 0.277
and 0.337, which compares well with the accurate theo-
retical values 0.301 [25] and 0.351 [27], respectively. The
static dipole polarizability is α∥ ¼ 6.427a30 and α⊥ ¼
4.637a30 for the ground state, which are both in good
agreement with the accurate calculations of Kolos and
Wolniewicz [28] (α∥ ¼ 6.380a30 and α⊥ ¼ 4.578a30).
Tomodel scattering from theground vibrational state in the

fixed-nuclei approximation more accurately, the equilibrium
distance is replaced by the mean internuclear distance of the
vibrational ground state [29]. For scattering calculations we
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use themean internuclear distance ofH2,Rm ¼ 1.448a0. It is
also important to note that in the fixed-nuclei approximation
the closuremethod is effectively used to analytically sumover
all vibrational and rotational excitations.
Scattering calculations were performed from 0.1 to

300 eV. With the Rm ¼ 1.448a0 fixed-nuclei structure
model the ionization threshold is at 15.97 eV. For energies
above the ionization threshold the 491-state model was
used. This is the intermediate energy region where ab initio
calculations are most difficult to perform. Below the
ionization threshold a smaller model is sufficient. In this
energy region we use the same model described above
except the outer electron (n0l0m0) orbitals were constructed
from a Laguerre basis that had Nl ¼ 10 − l functions up to
lmax ¼ 2. We have conducted convergence studies at
selected energies to verify the accuracy of the results as
a function of the size of the Laguerre basis and projectile
partial wave expansions. Detailed convergence studies will
be presented elsewhere.
The present results have been calculated using a pro-

jectile partial-wave expansion with maximum orbital angu-
lar momentum Lmax ¼ 8. The total spin S ¼ 1=2, odd and
even parity Π, and total orbital angular projection jMj ≤ 8
channels were included. Below the ionization threshold
fewer projectile partial waves are required. For inelastic
scattering, the orientationally averaged analytic Born sub-
traction method was used to top up the projectile partial
wave expansion for integrated cross sections [18].
The grand total cross section (GTCS) for electron

scattering from the ground state of the H2 molecule is
presented in Fig. 1. The CCC results are compared with the
measurements of Ferch et al. [30], van Wingerden et al.
[31], Hoffman et al. [32], Deuring et al. [33], Jones [34],
Subramanian and Kumar [35], Nickel et al. [36], and Zhou
et al. [37]. As far as we are aware these are the only
ab initio results of the GTCS across the intermediate-
energy region that are in excellent agreement with all
experiments. The small experimental uncertainties suggest
that the CCC formalism is correct across the entire energy
range, with elastic, excitation, and ionization cross sections
being taken into account accurately.

Our best estimate for the scattering length is 1.30a0 with
uncertainty of about 10%. This value is in agreement with
other calculations (1.24a0 [38], 1.27a0 [39], 1.29a0 [40],
and 1.30a0 [41]). Detailed analysis of low-energy e-H2

collisions will be conducted elsewhere.
In Fig. 2 total single ionization cross sections of H2 are

presented. CCC H2
þ production results are compared with

the H2
þ production measurements of Krishnakumar

and Srivastava [42] and Straub et al. [43] and the total
ionization cross section (TICS) measurements of Rapp and
Englander-Golden [44], Lindsay and Mangan [2], and
calculations using the RMPS [11] and TDCC [12] methods.
CCC results have beenmultiplied by the appropriate Franck-
Condon [45] factor to calculate the production of H2

þ
(≈98.5% of the fixed-nuclei cross section) and not disso-
ciative ionization. Comparing with experiment, the CCC
results are in excellent agreement with all experiments from
the ionization threshold to the cross section maximum. For

TABLE I. Two-electron energy E of electronic target states of
H2 and the vertical electronic-excitation energy from the ground
state ΔE at the internuclear distance of R0 ¼ 1.4a0. Comparisons
are made with accurate structure calculations [21–26].

E (a.u.) ΔE (eV)
State Present Reference Present Reference

X 1Σþ
g −1.162 −1.174 [21]

b 3Σþ
u −0.770 −0.784 [22] 10.67 10.62 [22]

a 3Σþ
g −0.710 −0.714 [23] 12.32 12.54 [23]

c 3Πu −0.701 −0.707 [24] 12.56 12.73 [24]
B 1Σþ

u −0.697 −0.706 [25] 12.66 12.75 [25]
EF 1Σþ

g −0.687 −0.692 [25] 12.92 13.13 [25]
C 1Πu −0.683 −0.689 [26] 13.03 13.22 [26]
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FIG. 1. Grand total cross section of electron scattering from H2.
CCC results are compared with the measurements of Ferch et al.
[30], van Wingerden et al. [31], Hoffman et al. [32], Deuring
et al. [33], Jones [34], Subramanian and Kumar [35], Nickel et al.
[36], and Zhou et al. [37].
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FIG. 2. Ionization cross sections of electron scattering from H2.
CCC results are compared with the H2

þ production measure-
ments of Krishnakumar and Srivastava [42], Straub et al. [43],
and the total ionization cross section measurements of Rapp and
Englander-Golden [44] and Lindsay and Mangan [2]. RMPS [11]
results end at 30 eV and are indistinguishable from CCC results.
TDCC [12] results are available only at 25, 50, and 75 eV.
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high energies CCC results favor the measurements of
Krishnakumar and Srivastava [42]. The excellent agreement
between theCCC results andmeasurements of theGTCSand
TICS indicates that the electron flux has been correctly
distributed to the continuum and discrete spectrum. Hence
elastic and electronic-excitation cross sections should be
accurate if the scattering calculation uses accurate target
states, as is the case with the present model.
Comparing with other calculations, CCC results are in

excellent agreementwith the ab initioRMPS [11] andTDCC
[12] results. The RMPS results are available from the
ionization threshold to 30 eV and TDCC results are only
available at 25, 50, and 75 eV. In theRMPScalculations there
was a problem with pseudoresonances and an averaging
procedure was used to smooth over the results. The one-
electron TDCC method utilizes the local-exchange approxi-
mation anduses smaller partialwave expansion togetherwith
a polynomial extrapolation technique. Despite these
differences the agreement with CCC is remarkable.
The elastic integrated cross section is presented in Fig. 3

from 10 to 100 eV (for lower energies see Fig. 1). The
fixed-nuclei CCC results are in excellent agreement with
the measurements of Shyn and Sharp [46], Nishimura et al.
[47], and Khakoo and Trajmar [48] across the entire energy
range considered. The measurements of Srivastava et al.
[49] are consistently lower than the CCC results and the
other measurements.
To complete our presentation we consider an example of

DCS. In Fig. 4 the 17.5 eV incident electron energy DCS are
presented for elastic scattering and low-lying electronic
excitations. Starting with the top-left panel the CCC elastic
DCS are compared with the measurements of Khakoo
and Trajmar [48] and the seven-state RM calculations of
Branchett et al. [8]. The CCC results are in good agreement
with experiment and the RM results, with some variation
between the two theories at the forward angles. Measure-
ments of the electronic excitations of H2 are exceptionally
difficult due to the overlapping electronic-vibrational

manifolds in the energy loss spectrum. Considering this
difficulty the CCC results are in excellent agreement with
experiment [50] for all transitions considered. CCC results
are also compared with the SMC calculations of da Costa
et al. [5] for excitation to the B 1Σþ

u , c 3Πu, andC 1Σu states.
In conclusion we have performed CCC calculations of

electron-H2 scattering over a very broad energy range
yielding excellent agreement with experiment. The CCC
formalism provides a complete solution of the electron-
molecular hydrogen scattering problem in the fixed-nuclei
approximation, irrespective of the projectile energy or the
electronic transition of interest. The fixed-nuclei approxi-
mation is the foundation on which techniques are built to
describe vibrational and rotational excitations, resonance,
and dissociative processes in molecules [9,10,20,51]. This
allows us to model such processes and address some
long-standing problems, such as the controversy over the
vibrational excitation cross sections for molecular hydro-
gen [3]. While we appreciate that molecular hydrogen is the
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simplest molecule of practical interest, the CCC formalism
is general and can readily be extended to other molecules
where the interaction is dominated by one or two-electron
excitations. We are now in a position for molecular targets
where we were for atomic targets two decades ago.
In addition to extending the CCC method to more

complicated molecules we are also extending the method
tomake use of the spheroidal coordinate system. This allows
us to study diffusemolecules like Li2 and scattering fromhot
(vibrationally excited) molecules. All this extensive data
will bemade available via the LXCat database and should be
useful in astrophysical, plasma, and transport modeling.
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