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We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas.
For a homogeneous buffer gas, the ion’s energy distribution reaches a stable equilibrium only if the mass of
the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in
combination with a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion
with the buffer-gas atoms, the ion’s energy distribution is numerically determined for arbitrary buffer-gas
distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion’s
equilibrium energy distribution are found. Final ion temperatures down to the millikelvin regime can be
achieved by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth
(forced sympathetic cooling).
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The ion motion inside a radio frequency (rf) trap is
characterized by the interplay between a fast oscillation
driven by the rf field (micromotion) and a much slower
oscillation in the confining ponderomotive potential (mac-
romotion) [1], thus representing a prototypical example of a
dynamically driven nonlinear system [2]. Through elastic
collisions with a cold buffer gas, either consisting of a
cryogenic noble gas [3–5] or laser cooled atoms [6–14], the
ion’s motion can be efficiently reduced, thus opening a
wide range of applications ranging from precision spec-
troscopy [15] and spectrometry [16,17] over quantum
computation [18] to cold chemical reactions dynamics
[19] and astrochemistry [20,21]. However, elastic collisions
influence the permanent exchange of energy between
micromotion and macromotion resulting in a net energy
transfer from the micromotion to the macromotion [22–26].
As a consequence of this coupling, the ion’s final mean
energy generally exceeds the buffer-gas temperature
[8,27–29] and the ion’s energy distribution is predicted
to deviate from a thermal distribution [23,24,26]. Because
of the stability constraints of a rf ion trap, efficient cooling
through collisions with buffer-gas atoms can only be
achieved for sufficiently low atom-to-ion mass ratios
ξ ¼ ma=mi. For larger mass ratios, the ion experiences
an effective energy gain through elastic collisions, even if
the buffer gas is at zero temperature, finally resulting in loss
from the trap. These two regimes are separated by the
critical mass ratio ξcrit, as first introduced by Major and
Dehmelt [30]. In recent years, several groups have deter-
mined the critical mass ratio numerically [23,24] as well as
analytically [26] and found values slightly larger than the
first prediction of Major and Dehmelt ξcrit ¼ 1.

In order to extend the regime of efficient cooling to lower
final temperatures and larger mass ratios, two different
approaches have been explored. Spatial confinement of the
buffer gas, e.g., atoms stored in optical traps [7–14],
restricts collisions to the trap center where the micromotion
is smallest, thus reducing the collision induced energy
transfer to the macromotion [9,24,31]. Alternatively, in rf
traps with higher pole orders the micromotion is reduced
over a larger volume thus allowing for efficient cooling
with buffer gas [31,32]. Despite a growing number of
experiments using these approaches, a general theoretical
framework describing the influence of both a spatially
confined buffer gas and high order rf traps is still lacking.
In this paper we present a comprehensive model for the

dynamics of a single ion interacting with a spatially
confined buffer gas inside a rf trap of arbitrary pole order.
The collisional kinematics can be favorably described in a
reference frame assigning the micromotion to the buffer gas
rather than the ion. Depending on the mass ratio ξ, the ion’s
final energy is either determined by the buffer-gas temper-
ature (ξ ≪ ξcrit) or by the effective energy of the ion’s
micromotion (ξ ≫ ξcrit). For a homogeneous buffer gas, the
micromotion restricts cooling to ξ < ξcrit in agreement with
previous work. However, for a spatially confined cooling
agent the emergence of an additional stable regime is
found, thus enabling efficient cooling of the ion motion
beyond ξcrit. In this regime the ion’s energy distribution is
determined by the energy of the trap’s ponderomotive
potential Veff averaged over the buffer-gas distribution. We
provide semianalytic expressions for the ion’s energy
distribution for arbitrary mass ratios and trap multipole
orders. As the averaged ponderomotive potential can be
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controlled, e.g., through adjustment of the trap parameters
or the atom cloud size, the ion’s final temperature can
actively be changed offering perspectives for enhanced
cooling [forced sympathetic cooling (FSC)].
Consider an ion stored in a cylindrically symmetric rf ion

trap of pole order n, undergoing elastic collisions with a
spatially confined neutral buffer gas as schematically
depicted in Fig. 1. The ion’s motion can be separated into
its micromotion and macromotion, characterized by the
velocities ~vi and ~ui, respectively. The micromotion is an
implicit function of the ion’s radial position r and the rf
phase Φrf ,

j~viðrÞj ¼ k
n
mi

rn−1 cosΦrf ; ð1Þ

with n being the trap’s multipole order, mi denoting the
ion’s mass, and k ¼ ðNe−ÞV0=ðωRn

0Þ being a constant
depending on the system parameters: Ne− (ion charge),
V0 (rf voltage), ω (rf frequency), and R0 (inner trap radius).
In this dynamically driven system the ion’s energy oscil-
lates with Φrf . Generally, this oscillation is much faster than
the time scale associated with the macromotion. For a Paul
trap, this corresponds to a small q parameter in theMatthieu
equations [18]. By averaging over one rf cycle, the ion’s
energy associated with the macromotion is obtained as
Ei ¼ mi~u2i =2þ VeffðrÞ with the ponderomotive poten-
tial Veff ¼ mih~viðrÞ2irf=2 ¼ n2k2r2n−2=4mi.

A third time scale is defined by the duration of a collision
that is assumed to be short compared to the other two time
scales. This holds, as long as the collision energy exceeds
the energy scale set by the interplay between micromotion
and short-range atom-ion interaction, as introduced in [25],
which is typically on the order of tens or hundreds of
microkelvin. In this case, the micromotion remains
unchanged during the collision (~v0i ≈ ~vi), and the macro-
motion after a single elastic collision is given by (see
Supplemental Material [33])

~u0i ¼
ξ

1þ ξ
Rðθc;ϕcÞ½~ui − ð~va − ~viÞ� þ

~ui þ ξð~va − ~viÞ
1þ ξ

;

ð2Þ
with ~va being the atom’s velocity and Rðθc;ϕcÞ being the
rotation matrix defined by the polar and azimuthal scatter-
ing angles θc and ϕc.
Note that Eq. (2) is formally equivalent to an elastic

collision in free space of an ion with momentum mi~ui
colliding with an atom of momentum mað~va − ~viÞ.
Therefore, it is useful to choose a reference frame in which
the micromotion is assigned to the atom instead of the ion,
leading to an effective atom velocity ~veff ¼ ~va − ~vi. By
averaging over all collision angles and one period of
the micromotion, the atoms' average kinetic energy is
obtained as

hEaðrÞi ¼
1

2
mahv2effi ¼ ξVeffðrÞ þ

3

2
kBTa; ð3Þ

with kB being the Boltzmann constant and Ta the buffer-gas
temperature.
By comparing the radial dependence of the atom’s

average kinetic energy to that of the ion, as given by
1
2
miu2i ðrÞ, two distinct regions, separated by a radius rc, can

be identified: For r < rc the ion’s kinetic energy exceeds
the average energy of the atoms resulting in a net energy
transfer to the atoms, whereas for r > rc the ion’s energy is
generally increased through a collision with the buffer-gas
atom. The radius rc is given by

rc ¼ rmax

�
1 − 3

2
kBTa=Ei

1þ ξ

�
1=2n−2

; ð4Þ

with rmax being the ion’s maximum turning point in the
ponderomotive potential, as defined by the condition
VeffðrmaxÞ ¼ Ei. For Ei < kBTa, the net energy transfer is
always positive and, thus, the radius rc is no longer defined.
In order to numerically determine the ion’s equilibrium

energy distribution, the energy Ei is tracked over the course
of many collisions. Generally, this would require solving
the equations of motions for the ion’s full trajectory and
evaluating the scattering probability at every infinitesimal
time step. In order to circumvent this computationally
demanding approach, two simplifications can be made.

FIG. 1. Schematic of an ion trajectory (blue) in a linear octupole
trap (pole order n ¼ 4) colliding with a buffer-gas atom (red). The
velocities ~vi and ~ui are associated with the ion’s micro and
macromotion, respectively, while the atom’s velocity is indicated
by ~va. In the lower graph, the effective ponderomotive potential
Veff of the ion trap is shown together with the spatial distribution
of the buffer-gas atoms (spatial extension 2σa). In the right
panels, typical ion trajectories are shown for a collision near the
trap center, yielding a decrease of the ion’s energy (upper panel),
and near the classical turning point, resulting in an increase of the
ion’s energy (lower panel).
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First, for the energy regime discussed here, the classical
Langevin model [34,35] can be used, which results in a
velocity-independent scattering probability [24,26].
Second, assuming that the time between consecutive
collisions is long compared to the period of the macro-
motion, the scattering probability can be averaged over the
macromotion resulting in a radially dependent scattering
probability (see Supplemental Material [33]).
Fig. 2 shows the resulting final distributions PðEiÞ for

different mass ratios in a Paul trap. Depending on the mass
ratio ξ, we find three different regimes characterized by the
shape of the energy distributions. For ξ ≪ 1 the ion
thermalizes to the buffer-gas temperature as the effective
energy of the atoms is dominated by the thermal energy of
the atoms [see Eq. (3)]. Therefore, the ion’s thermal
distribution follows a Maxwell-Boltzmann distribution

for a gas in a harmonic radial potential (Boltzmann regime;
see Table I).
A second regime emerges for larger mass ratios ξ ≈ 1.

The energy distribution exhibits a power-law tail Eκ

towards higher energies, while the low energy behavior
still follows a Boltzmann distribution (power-law regime;
see Table I). Such power-law behavior has been identified
and explained in previous investigations [22–24,26]. From
the frame transformation, resulting in Eq. (3), the deviation
from a Boltzmann distribution can be understood as a
consequence of the contribution of the micromotion to
the effective velocity of the atoms. Through collisions with
the buffer gas, an ion can gain multiples of its current
energy VeffðrmaxÞ.
The inset of Fig. 2 depicts the power-law exponent κ

obtained from our simulation and compares it with previous
models, showing excellent agreement. For κ ≥ −2 the ion’s
mean energy diverges and the ion is no longer confined by
the trap. This condition is commonly used to define the
critical mass ratio ξcrit [23,26]. From the simulations we
obtain ξcrit ≈ 1.4.
If the buffer gas is evenly distributed over the entire ion

trap, sympathetic cooling is only feasible for ξ < ξcrit. For
an atom cloud with finite size σa, however, we find an
additional stable regime even for ξ ≫ 1, characterized by
an energy distribution following a power law at lower
energies bound by an exponential decrease towards higher
energies (localization regime; see Table I). For increasing
mass ratios, the exponent in the power-law regime
increases, until the distribution becomes essentially flat
(κ ≃ 0) for ξ ≈ 5. For even larger mass ratios, the exponent
increases further, finally converging towards κ ≈ 3=2
for ξ ≫ 1.
The exponential decrease of the energy distribution at the

higher energies is caused by the localization of the buffer
gas. As collisions are restricted to the volume of the buffer
gas, the effective energy of the atoms hEaðrÞi [see Eq. (3)]
is bound by the finite size of the cloud. The effective energy
content Ēa accessible for collisions with an ion is given by
integrating hEaðrÞi over the spatial distribution of the
buffer gas. For a Gaussian-shaped cloud with standard
deviation σa this yields

Ēa ¼
3

2
kBTa þ 2n−1ðn − 1Þ!ξVeffðσaÞ: ð5Þ

In the localization regime, the scale of the energy distri-
bution is thus given by Ēa, in contrast to kBTa for the
Boltzmann regime. This is illustrated in Fig. 2. For ξ ¼ 0.1
the numerical data are well reproduced by a Boltzmann
distribution with energy scale kBTa, whereas the distribu-
tion shown for ξ ¼ 34 is given by a distribution function of
Boltzmann type; see Table I (localization regime). The
mean energy is given by Ēa; therefore, the characteristic
energy scale E⋆

a becomes dependent on the power-law
exponent κ.
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FIG. 2. Normalized equilibrium energy distributions for differ-
ent mass ratios ξ in a Paul trap (pole order n ¼ 2). The buffer-gas
cloud distribution is given by a Gaussian of size σa ¼ R0=100
and temperature of Ta ¼ 200 μK. Also shown is the energy
distribution in the Boltzmann regime (red curve) and the energy
distribution for ξ ¼ 34 (purple curve), according to the expres-
sions in Table I. The inset compares the exponents κ of the power
law in the energy distribution (as defined in Table I), for different
models. The condition κ ¼ −2 separates the regimes of stable
from unstable ion motion. Results found by Zipkes et al. have
been corrected as κcorr ¼ κ − 1 (see Supplemental Material [33]).

TABLE I. Analytical expressions for the ion’s energy distribu-
tion in the three different regimes for a Paul trap, as obtained from
fitting the numerical results shown in Fig. 2.

Boltzmann regime (ξ ≪ ξcrit) PðEiÞ ∝ E3=2
i exp ½−ðEi=kBTaÞ�

Power-law regime (ξ ∼ ξcrit) PðEiÞ ∝
n
E3=2
i ; Ei ≪ kBTa

Eκ
i ; Ei ≫ kBTa

Localization regime (ξ ≫ ξcrit) PðEiÞ ∝ Eκ
i exp ½−ðEi=E⋆

aÞ�
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So far, we have discussed the case of a Paul trap. For
higher trap orders, we find the same regimes, yet a critical
mass ratio ξcritðnÞ depending on the multipole-order n. The
energy distributions are slightly modified to the ones
described in Table I: In the Boltzmann regime the distribu-
tions differ as the average energy stored in the ponder-
omotive motion varies with n. The ratio between the ion’s
average potential and kinetic energy can be expressed as
hVeffi=hEkini ¼ 2=ð3n − 3Þ, as follows from the virial
theorem. Thus, the ion has a larger mean energy hEii ¼ ½3

2
þ

ð1=n − 1Þ�kBTa than the buffer-gas atoms’ thermal energy
3
2
kBTa. Therefore, the corresponding Boltzmann distribu-

tion is given by PðEiÞ ∝ E1=2þ1=ðn−1Þ
i exp ð−Ei=kBTaÞ,

which reproduces our numerical simulations well.
With increasing mass ratio we observe the emergence of

the power-law regime as in case of the Paul trap, with the
difference that the transition now occurs at higher mass
ratios. For a fixed mass ratio one finds that the exponent
decreases with increasing pole order, as was already
described in [22]. The critical mass ratio, again defined
by the exponent κ ¼ −2, is numerically found to be

ξcritðnÞ ≈ 1.4ðn − 1Þ: ð6Þ
The critical mass ratio can also be approximated analyti-
cally from Eq. (2) by solving h~u0i2 − ~ui2irf ¼ 0 and again
applying the virial theorem. This results in a critical mass
ratio of ξcritðnÞ ¼ 1.5ðn − 1Þ, which reproduces the linear
dependence on the pole order of the numerical findings.
Consequently, Eq. (6) suggests that sympathetic cooling
can be efficiently applied even with homogeneously
distributed heavy buffer gases (ξ ≫ 1) as long as the pole
order n is sufficiently high.
For a localized buffer gas with a mass ratio exceeding

the critical value as given in Eq. (6), the ion’s energy
distribution follows the same analytic form as in a Paul trap
(see localization regime in Table I). The corresponding
energy scale is given by the general expression Eq. (5)
yielding PðEiÞ ∝ Eκ

i expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei=E⋆

a
n−1
p Þ. The mean energy is

again given by Ēa; therefore, E⋆
a depends on n as well as the

power-law exponent κ.
The scaling of the maximum energy given by Eq. (5)

implies that the ion’s mean energy can be decreased by
lowering VeffðσaÞ (FSC). This can be achieved by lowering
the rf voltage V0, compressing the buffer-gas cloud, or both
at the same time. Unlike forced evaporative cooling in
atomic traps, FSC does not lead to a loss of particles [36].
Adjusting these parameters sufficiently slow compared to
the collisional equilibration time, the ion remains trapped.
We find in our simulations that the ratio between the size of
the buffer-gas cloud and the volume probed by the ion
remains constant, leaving the relative overlap and thus the
average scattering rate unaffected. This holds, as long as the
thermal energy in Eq. (5) is negligible, resulting in the ion’s
mean energy being proportional to VeffðσaÞ. In this case the

volume probed by the ion, characterized by rmax, is directly
proportional to σa and does not depend on the trap
parameters.
Figure 3 demonstrates the principle of FSC by slowly

decreasing the size of the buffer gas. Following Eq. (5), the
ion’s energy distribution is shifted towards lower energies.
In the case of a Paul trap and a mass ratio of ξ ¼ 10, this
leads to a decrease in the ion’s temperature from 1600 K for
σa ¼ 0.64R0 down to the buffer-gas temperature of 4 K for
σa ¼ 0.01R0 (see inset of Fig. 3).
Using the favorable frame transformation, where the

micromotion is assigned to the buffer-gas atoms, we have
found simple analytic expressions describing the energy
distribution of the ion and provided intuitive insight into the
dynamics of buffer-gas cooling in ion traps of arbitrary
multipole order. For a spatially confined buffer gas, we
discovered a regime of stable ion motion even for large
atom-to-ion mass ratios, thus extending previous inves-
tigations on the dynamics of ions colliding with a homo-
geneously distributed buffer gas. These findings enable the
design of a new class of experiments for creating cold and
ultracold samples of atomic and molecular ions. By
ramping down the ion trap voltage and/or the spatial
extension of the buffer gas, one can further cool the ion’s
motion (forced sympathetic cooling). As a realistic example
[37] we estimate a final temperature of a few tens of
millikelvin for OH− ions in an octupole trap cooled by Rb
atoms in a magneto-optical trap despite the mass ratio of
ξ ¼ 5. So far, we have ignored ion-ion interactions [38] as
well as the axial confinement [29,39] or the effect of stray
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FIG. 3. Forced sympathetic cooling. Shown are four energy
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electric fields [24,25,40]. To a first approximation these
additional factors might be treated as perturbations of the
ponderomotive potential, resulting in a reduction of the
critical mass ratio.

This work is supported in part by the Heidelberg Center
for Quantum Dynamics and the BMBF under Contract
No. 05P12VHFA6. B. H. acknowledges support by
HGSHire and P. W. by Deutschlandstipendium and
Springer. We thank S. Whitlock, J. Evers, R. Wester,
and P. Schmelcher for fruitful discussions.
B. H. and P. W. contributed equally to this work.

*weidemueller@uni‑heidelberg.de
[1] H. G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967).
[2] P. K. Ghosh, Ion Traps, International Series of Momographs

on Physics (Oxford University Press, Oxford, 1996).
[3] J. C. Pearson, L. C. Oesterling, E. Herbst, and F. C. De

Lucia, Phys. Rev. Lett. 75, 2940 (1995).
[4] S. Schlemmer, T. Kuhn, E. Lescop, and D. Gerlich, Int. J.

Mass Spectrom. 185, 589 (1999).
[5] J. Glosík, P. Hlavenka, R. Plašil, F. Windisch, D. Gerlich,

A. Wolf, and H. Kreckel, Phil. Trans. R. Soc. A 364, 2931
(2006).

[6] E. R. Hudson, Phys. Rev. A 79, 032716 (2009).
[7] A. T. Grier, M. Cetina, F. Oručević, and V. Vuletić, Phys.

Rev. Lett. 102, 223201 (2009).
[8] C. Zipkes, S. Palzer, C. Sias, and M. Kohl, Nature (London)

464, 388 (2010).
[9] K. Ravi, S. Lee, A. Sharma, G. Werth, and S. Rangwala,

Nat. Commun. 3, 1126 (2012).
[10] S. Schmid, A. Harter, A. Frisch, S. Hoinka, and J. H.

Denschlag, Rev. Sci. Instrum. 83, 053108 (2012).
[11] W. G. Rellergert, S. T. Sullivan, S. J. Schowalter, S.

Kotochigova, K. Chen, and E. R. Hudson, Nature (London)
495, 490 (2013).

[12] A. Härter and J. Hecker Denschlag, Contemp. Phys. 55, 33
(2014).

[13] S. Willitsch, arXiv:1401.1699.
[14] S. Dutta, R. Sawant, and S. A. Rangwala, arXiv:

1512.04197.
[15] O. Asvany, P. Padma Kumar, B. Redlich, I. Hegemann, S.

Schlemmer, and D. Marx, Science 309, 1219 (2005).
[16] D. J. Douglas, A. J. Frank, and D. Mao, Mass Spectrom.

Rev. 24, 1 (2005).

[17] K. Blaum, Phys. Rep. 425, 1 (2006).
[18] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev.

Mod. Phys. 75, 281 (2003).
[19] J. Mikosch, M. Weidemüller, and R. Wester, Int. Rev. Phys.

Chem. 29, 589 (2010).
[20] D. Gerlich and G. Kaefer, Astrophys. J. 347, 849 (1989).
[21] D. Gerlich and M. Smith, Phys. Scr. 73, C25 (2006).
[22] O. Asvany and S. Schlemmer, Int. J. Mass Spectrom. 279,

147 (2009).
[23] R. G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009).
[24] C. Zipkes, L. Ratschbacher, C. Sias, and M. Köhl, New J.

Phys. 13, 053020 (2011).
[25] M. Cetina, A. T. Grier, and V. Vuletić, Phys. Rev. Lett. 109,

253201 (2012).
[26] K. Chen, S. T. Sullivan, and E. R. Hudson, Phys. Rev. Lett.

112, 143009 (2014).
[27] O. Asvany, O. Ricken, H. S. P. Müller, M. C. Wiedner, T. F.

Giesen, and S. Schlemmer, Phys. Rev. Lett. 100, 233004
(2008).

[28] S. Schmid, A. Härter, and J. H. Denschlag, Phys. Rev. Lett.
105, 133202 (2010).

[29] R. Otto, J. Xie, J. Brox, S. Trippel, M. Stei, T. Best, M. R.
Siebert, W. L. Hase, and R. Wester, Faraday Discuss. Chem.
Soc. 157, 41 (2012).

[30] F. G. Major and H. G. Dehmelt, Phys. Rev. 170, 91 (1968).
[31] D. Gerlich, Inhomogeneous rf Fields: A Versatile Tool for

the Study of Processes with Slow Ions, Advances in
Chemical Physics Vol. LXXXI (John Wiley & Sons, Inc.,
New York, 1992), Chap. 1.

[32] R. Wester, J. Phys. B 42, 154001 (2009).
[33] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.233003 for further
information.

[34] Langevin, Ann. Chim. Phys. 5, 245 (1905).
[35] G. Gioumousis and D. P. Stevenson, J. Chem. Phys. 29, 294

(1958).
[36] W. Ketterle and N. V. Druten, Adv. At. Mol. Opt. Phys. 37,

181 (1996).
[37] J. Deiglmayr, A. Göritz, T. Best, M. Weidemüller, and

R. Wester, Phys. Rev. A 86, 043438 (2012).
[38] K. Chen, S. T. Sullivan, W. G. Rellergert, and E. R. Hudson,

Phys. Rev. Lett. 110, 173003 (2013).
[39] O. Y. Lakhmanskaya, T. Best, S. S. Kumar, E. S. Endres, D.

Hauser, R. Otto, S. Eisenbach, A. von Zastrow, and R.
Wester, Int. J. Mass Spectrom. 365, 281 (2014).

[40] T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, and T.
Schaetz, Nat. Commun. 5, 5587 (2014).

PRL 116, 233003 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

233003-5

http://dx.doi.org/10.1016/S0065-2199(08)60170-0
http://dx.doi.org/10.1103/PhysRevLett.75.2940
http://dx.doi.org/10.1098/rsta.2006.1866
http://dx.doi.org/10.1098/rsta.2006.1866
http://dx.doi.org/10.1103/PhysRevA.79.032716
http://dx.doi.org/10.1103/PhysRevLett.102.223201
http://dx.doi.org/10.1103/PhysRevLett.102.223201
http://dx.doi.org/10.1038/nature08865
http://dx.doi.org/10.1038/nature08865
http://dx.doi.org/10.1038/ncomms2131
http://dx.doi.org/10.1063/1.4718356
http://dx.doi.org/10.1038/nature11937
http://dx.doi.org/10.1038/nature11937
http://dx.doi.org/10.1080/00107514.2013.854618
http://dx.doi.org/10.1080/00107514.2013.854618
http://arXiv.org/abs/1401.1699
http://arXiv.org/abs/1512.04197
http://arXiv.org/abs/1512.04197
http://dx.doi.org/10.1126/science.1113729
http://dx.doi.org/10.1002/mas.20004
http://dx.doi.org/10.1002/mas.20004
http://dx.doi.org/10.1016/j.physrep.2005.10.011
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1080/0144235X.2010.519504
http://dx.doi.org/10.1080/0144235X.2010.519504
http://dx.doi.org/10.1086/168174
http://dx.doi.org/10.1088/0031-8949/73/1/N05
http://dx.doi.org/10.1016/j.ijms.2008.10.022
http://dx.doi.org/10.1016/j.ijms.2008.10.022
http://dx.doi.org/10.1103/PhysRevLett.102.063001
http://dx.doi.org/10.1088/1367-2630/13/5/053020
http://dx.doi.org/10.1088/1367-2630/13/5/053020
http://dx.doi.org/10.1103/PhysRevLett.109.253201
http://dx.doi.org/10.1103/PhysRevLett.109.253201
http://dx.doi.org/10.1103/PhysRevLett.112.143009
http://dx.doi.org/10.1103/PhysRevLett.112.143009
http://dx.doi.org/10.1103/PhysRevLett.100.233004
http://dx.doi.org/10.1103/PhysRevLett.100.233004
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1039/c2fd20013a
http://dx.doi.org/10.1039/c2fd20013a
http://dx.doi.org/10.1103/PhysRev.170.91
http://dx.doi.org/10.1088/0953-4075/42/15/154001
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.233003
http://dx.doi.org/10.1063/1.1744477
http://dx.doi.org/10.1063/1.1744477
http://dx.doi.org/10.1016/S1049-250X(08)60101-9
http://dx.doi.org/10.1016/S1049-250X(08)60101-9
http://dx.doi.org/10.1103/PhysRevA.86.043438
http://dx.doi.org/10.1103/PhysRevLett.110.173003
http://dx.doi.org/10.1016/j.ijms.2014.03.001
http://dx.doi.org/10.1038/ncomms6587

