
Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon
Anomalous Magnetic Moment

T. Blum,1 P. A. Boyle,2 T. Izubuchi,3,4 L. Jin,5 A. Jüttner,6 C. Lehner,3,* K. Maltman,7,8 M. Marinkovic,9

A. Portelli,2,6 and M. Spraggs6

(RBC and UKQCD Collaborations)

1Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, USA
2SUPA, School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

3Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

5Physics Department, Columbia University, New York, New York 10027, USA
6School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

7Mathematics & Statistics, York University, Toronto, Ontario M3J 1P3, Canada
8CSSM, University of Adelaide, Adelaide, South Australia 5005, Australia

9CERN, Physics Department, 1211 Geneva 23, Switzerland
(Received 30 December 2015; revised manuscript received 6 April 2016; published 8 June 2016)

We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected
contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a
refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with
modest computational effort. Measurements were performed on the 483 × 96 physical-pion-mass lattice
generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum
polarization aHVPðLOÞdiscμ ¼ −9.6ð3.3Þð2.3Þ × 10−10, where the first error is statistical and the second
systematic.
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Introduction.—The anomalous magnetic moment of
leptons provides a powerful tool to test relativistic quan-
tum-mechanical effects at tremendous precision. Consider
the magnetic dipole moment of a fermion

~μ ¼ g
�

e
2m

�
~s; ð1Þ

where ~s is the particle’s spin, e is its charge, and m is its
mass. While Dirac’s relativistic quantum-mechanical
treatment of a fermion coupled minimally to a classical
photon background predicts a Landé factor of g ¼ 2,
additional electromagnetic quantum effects allow the
anomalous magnetic moment a ¼ ðg − 2Þ=2 to assume
a nonzero value. These anomalous moments are
measured very precisely. For the electron, e.g., ae ¼
0.00115965218073ð28Þ [1] yielding the currently most
precise determination of the fine structure constant
α ¼ 1=137.035999157ð33Þ based on a five-loop quantum
electrodynamics (QED) computation [2].

The muon anomalous magnetic moment promises high
sensitivity to new physics (NP) beyond the standard model
(SM) of particle physics. In general, new physics contri-
butions to al are expected to scale as al − aSMl ∝
ðm2

l=Λ
2
NPÞ for lepton l ¼ e, μ, τ and new physics scale

ΛNP. With aτ being currently experimentally inaccessible,
aμ is the optimum channel to uncover new physics.
Interestingly, there is a 3.1σ − 3.5σ tension between

current experimental and theoretical determinations of aμ,

aexptμ − aSMμ ¼ð27.6� 8.0Þ × 10−10 ½3�;
ð25.0� 8.0Þ × 10−10 ½4�; ð2Þ

where the experimental measurement is dominated by the
BNL experiment E821 [3]. The theoretical prediction [4] is
broken down in individual contributions in Table I.
The theory error is dominated by the hadronic vacuum

polarization (HVP) and hadronic light-by-light (HLBL)
contributions. A careful first-principles determination of
these hadronic contributions is very much desired to
resolve or more firmly establish the tension with the current
SM prediction. Furthermore, the future aμ experiments at
Fermilab (E989) [9] and J-PARC (E34) [10] intend to
decrease the experimental error by a factor of 4. Therefore,
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a similar reduction of the theory error is essential in order to
make full use of the experimental efforts.
The current SM prediction for the HLBL contribution

[11] is based on a model of quantum chromodynamics
(QCD); however, important progress towards a first-prin-
ciples computation has been made recently [12–14]. The
uncertainty of the HVP contribution may be reduced to
δaμ ¼ 2.6 × 10−10 using improved experimental eþe−
scattering data [5]. An ab initio theory prediction based
on QCD, however, can provide an important alternative
determination that is systematically improvable to higher
precision.
One of the main challenges in the first-principles

computation of the HVP contribution with percent or
subpercent uncertainties is the control of statistical noise
for the quark-disconnected contribution (see Fig. 1) at
physical pion mass. Significant progress has been made
recently in the computation of an upper bound [15–17],
an estimate using lattice QCD data at heavy pion mass [18],
and towards a first-principles computation at physical
pion mass [19]. Here, we present the first result for

aHVP ðLOÞ disc
μ at physical pion mass. We report the

result for the combined up, down, and strange-quark
contributions.
Computational method.—In the following we describe

the refined noise-reduction technique that allowed for the
control of the statistical noise with modest computational
effort.
We follow the basic steps of Ref. [20] and treat the muon

and photon parts of the diagrams in Fig. 1 analytically,
writing

aμ ¼ 4α2
Z

∞

0

dðq2Þfðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ�; ð3Þ

where fðq2Þ is a known analytic function [20] and Πðq2Þ is
defined in the continuum through the two-point function

X
x

eiqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ; ð4Þ

with the sum over space-time coordinate x and
JμðxÞ ¼ i

P
fQfΨ̄fðxÞγμΨfðxÞ. The sum is over quark

flavors f with QED charge Qf (Qu ¼ 2=3,
Qd=s ¼ −1=3). We compute Πðq2Þ using the kernel func-
tion of Refs. [21,22],

Πðq2Þ−Πðq2¼0Þ¼
X
t

�
cosðqtÞ−1

q2
þ1

2
t2
�
CallðtÞ; ð5Þ

with

CallðtÞ ¼
1

3

X
~x

X
j¼0;1;2

hJjð~x; tÞJjð0Þi; ð6Þ

which sufficiently suppresses the short-distance contribu-
tions such that we are able to use two less computationally
costly, nonconserved, local lattice vector currents [23]. For
convenience, we have split the space-time sum over x in a
spatial sum over ~x and a sum over the time coordinate t. We
sum over spatial Lorentz indices 0,1,2.
The Wick contraction in Eq. (6) yields both connected

and disconnected diagrams of Fig. 1. In the following C
stands for the combined up, down, and strange-quark
disconnected contribution of Call, while Cs stands for the
strange-quark connected contribution of Call. The reason
for defining Cs becomes apparent below. The light up and
down flavors are treated as mass degenerate such that

CðtÞ ¼ 1

3V

X
j¼0;1;2

X
t0
hVjðtþ t0ÞVjðt0ÞiSUð3Þ; ð7Þ

where V stands for the four-dimensional lattice volume,
Vμ ¼ ð1=3ÞðVu=d

μ − Vs
μÞ, the average is over all SU(3)

gauge configurations, and

TABLE I. Current standard model prediction of aμ including
uncertainties contrasted with the experimental target precision of
the upcoming Fermilab E989 experiment [4–6]. The individual
contributions are defined in Ref. [4].

Contribution Value ×1010
Uncertainty

×1010

QED 11 658 471.895 0.008
Electroweak corrections 15.4 0.1
HVP [leading order (LO)] [7] 692.3 4.2
HVP (LO) [8] 694.9 4.3
HVP (next-to-leading order) −9.84 0.06
HVP (next-to-next-to-leading
order)

1.24 0.01

HLBL 10.5 2.6
Total SM prediction [7] 11 659 181.5 4.9
Total SM prediction [8] 11 659 184.1 5.0
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ≈1.6

FIG. 1. HVP contributions to aμ with the external photon
attached to the muon line. As is common for nonperturbative
lattice QCD computations, one does not explicitly draw gluons
but understands each diagram to stand for all orders in QCD.
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Vf
μðtÞ ¼

X
~x

ImTr½D−1
~x;t;~x;tðmfÞγμ�; ð8Þ

with Dirac operator DðmfÞ evaluated at quark mass mf.
Controlling statistical fluctuations is the largest chal-

lenge in the computation of the disconnected contribution.
In order to successfully measure the disconnected contri-
bution, two conditions need to be satisfied: (i) large
fluctuations of the up, down, and strange contributions
that enter with opposite sign need to cancel [15] and (ii) the
measurement needs to average over the entire space-time
volume without introducing additional noise. Here, we use
the following method to satisfy both (i) and (ii) simulta-
neously. First, the full quark propagator is separated in high
and low-mode contributions, where the former are esti-
mated stochastically and the latter are averaged explicitly
[24], i.e., we separate D−1 ¼ P

nv
nðwnÞ† þD−1

high, where
the vectors vn and wn are reconstructed from the even-odd
preconditioned low modes n of the Dirac propagatorD−1. It
is now crucial to include all modes with eigenvalues up to
the strange-quark mass in the set of low modes for the up
and down-quark propagators to satisfy (i). Since the signal
is the difference of light and strange contributions, we may
then expect the high-mode contribution to be significantly
suppressed and the low-mode contribution to contain the
dominant part of the signal. This is indeed the case in our
computation and yields a substantial statistical benefit since
we evaluate the low modes exactly without the introduction
of noise and average explicitly over the entire volume.
In order to satisfy (ii), we must control the stochastic

noise of the high-mode contributions originating from
unwanted long-distance contributions of the random Z2

sources of Ref. [24]. We achieve this by using what we refer
to as sparsened Z2 noise sources that have support only for
points xμ with ½xμ − xð0Þμ �modN ¼ 0 thereby defining a
sparse grid with spacing N, similar to Ref. [25]. While a
straightforward dilution strategy [24] would require us to
sum over all possible offsets of the sparse noise grid, xð0Þμ ,
we choose the offset stochastically for each individual
source, which allows us to project to all momenta. It also
allows us to avoid the largest contribution of such random
sources to the noise that comes from random sources at
nearby points.
The parameter choice of N is crucial to satisfy (ii) with

minimal cost. An interesting measure for the noise origi-
nating from the random sources is the variance σ2 of the set
of all numbers VμðtÞ for all possible μ and t sampled on a
fixed gauge configuration; see Fig. 2. Since we can use all
possibleOðM2Þ combinations ofM high-mode sources and
time coordinates in Eq. (7), we may expect a noise
suppression of Oð1=MÞ as long as individual contributions
are sufficiently statistically independent. A similar idea of
Oð1=MÞ noise reduction was recently successfully used in
Ref. [12]. We find this to hold to a large degree, and
therefore also show the appropriately rescaled σ in the

lower panel of Fig. 2. The figure illustrates the powerful
cancellation of noise between the light and strange-quark
contributions and the success of the sparsening strategy. We
find an optimum value of N ¼ 3 for the case at hand, which
is used for the subsequent numerical discussion.
We use 45 stochastic high modes per configuration and

measure on the 21 Möbius domain wall [26] configurations
of the 483 × 96 ensemble at physical pion mass and lattice
cutoff a−1 ¼ 1.73 GeV generated by the RBC and
UKQCD collaborations [27]. For this number of high
modes we find the QCD gauge noise to dominate the

uncertainty for aHVP ðLOÞ disc
μ . The all-mode-averaging strat-

egy [28,29] was employed to reduce the cost of computing
multiple sources on the same configuration. The compu-
tation presented in this manuscript uses 2000 zMöbius [30]
eigenvectors generated as part of an ongoing HLBL lattice
computation [12]. We treat the shorter directions with 48
points as the time direction and average over the three
symmetric combinations to further reduce stochastic noise.
Additional details of our analysis are given in Ref. [31].
Analysis and results.—Combining Eqs. (3) and (5) and

using CðtÞ ¼ Cð−tÞ,

aHVP ðLOÞ disc
μ ¼

X∞
t¼0

wtCðtÞ; ð9Þ

with appropriately defined wt. Because of our choice of
relatively short time direction with 48 points, special care
needs to be taken to control potentially missing long-time
contributions in CðtÞ. In the following we estimate these
effects quantitatively. Consider the vector operator
Vf;f0
μ ðxÞ ¼ Ψ̄fðxÞγμΨf0 ðxÞ with f and f0 denoting quark

flavors. Then the Wick contractions hVu;u
μ Vu;u

ν i −
hVu;d

μ Vd;u
ν i isolate the light-quark disconnected contribution

10-1

100

101

σ

Light
Light - Strange

LightHighmode - Strange

10-2

10-1

 0  1  2  3  4  5  6  7  8

σ 
/ (

96
 / 

N
)

Sparse grid spacing N

FIG. 2. Noise of the single vector operator loop as a function of
sparse grid spacing N. The figure at the bottom normalizes the
noise by taking into account the additional volume averaging for
smaller values of N.
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in the isospin symmetric limit; see also Ref. [32].
Unfortunately, there is no similar linear combination (with-
out partial quenching) that allows for the isolation of the
strange-quark disconnected contribution. Nevertheless,
using hðVu;u

μ − Vs;s
μ ÞðVu;u

ν − Vs;s
ν Þi − hVu;d

μ Vd;u
ν i one can

isolate the sum of CðtÞ þ CsðtÞ, again making use of the
isospin symmetry. Since this sum corresponds to a com-
plete set of Feynman diagrams resulting from the above
Wick contractions, we can represent it as a sum over
individual exponentials CðtÞ þ CsðtÞ ¼

P
mcme

−Emt with
cm ∈ R and Em ∈ Rþ. The coefficients cm can be negative
because positivity arguments only apply to some individual
Wick contractions but not necessarily to the sum.
We show CðtÞ and CsðtÞ obtained in our lattice QCD

computation in Fig. 3. Starting from time slices 17 and 18
the correlator CðtÞ is not well resolved from 0; however,
from time slices 11 to 17 a two-state fit including the
ρð770Þ and ϕð1020Þ describes CðtÞ þ CsðtÞ well. Here, the
ρ is a proxy for combined ρ and ω contributions due to their
similar energy. It is necessary to include the ϕ in this fit
ansatz, in spite of it having a larger mass than the lower
lying ρ and ω states, because the combination of the octet
vector current I ¼ 0 and I ¼ 1 polarizations representing
CðtÞ þ CsðtÞ in the isospin limit has relative coefficients
that produce a strong ρ − ω cancellation. In the narrow
width approximation, with physical values of the vector
meson decay constants, this cancellation leads to an
expectation cρ=cϕ ≃ −0.1. This expectation is well borne
out by the results of our fits. The vector meson states are not
stable in our lattice simulation; however, the two-
exponential fit form employed serves as a physically
motivated model, albeit one that fits the data well. Since
this model only enters our systematic error estimate, we
find this imperfection to be acceptable. A systematic study
of different fit ranges is presented in Fig. 4, where p values
greater than 0.05 are found for all fit ranges t ∈
½tmin;…; 17� with tmin ∈ ½8;…; 12�.

We now define the partial sums

LT ¼
XT
t¼0

wtCðtÞ; ð10Þ

FTðrÞ ¼
Xtmax

t¼Tþ1

wt½crρe−Eρt þ crϕe
−Eϕt − CsðtÞ�; ð11Þ

where crρ and crϕ are the parameters of the fit with fit range r
and tmax ¼ 24 for our setup. For sufficiently large T, LT is
expected to exhibit a plateau region as a function of T from
which we can determine aHVP ðLOÞ disc

μ . The sum LT þ FT is
also expected to exhibit such a plateau to the extent that the
model in FT describes the data well.
Based on Fig. 4, we choose r ¼ ½11;…; 17� as the

preferred fit range to determine FT but a cross-check with
r ¼ ½12;…; 17� has been performed yielding a consistent
result. Figure 5 shows the resulting plateau region for LT
and LT þ FT . The substantial statistical noise in the large-T
region of Fig. 5 is a consequence of wt growing approx-
imately with the fourth power of t and the statistical noise
of CðtÞ being t independent. In order to avoid contamina-
tion of our first-principles computation with the model
dependence of FT , we determine aHVP ðLOÞ disc

μ from LT¼20

and include FT¼20 as systematic uncertainty estimating a
potentially missing long-time tail. We choose the value at
T ¼ 20 since it appears to be safely within a plateau region
but sufficiently far from T ¼ 24 to suppress backwards-
propagating effects [33]. We find aHVP ðLOÞ disc

μ ¼
−9.6ð3.3Þ × 10−10.
We expect the finite lattice spacing and finite simulation

volume as well as long-time contributions to Eq. (9) to
dominate the systematic uncertainties of our result. With
respect to the finite lattice spacing a reasonable proxy for
the current computation may be our HVP connected
strange-quark analysis [34] for which the 483 result at
a−1 ¼ 1.73 GeV agrees withinOð5%Þwith the continuum-
extrapolated value. The estimate of 5% discretization errors
for the current calculation is also of the expected size of

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 0  5  10  15  20
t

p = 0.12, cρ = -0.0017(9), cΦ = 0.016(5)
C(t) + Cs(t)

C(t)

FIG. 3. Zero-momentum projected correlator CðtÞ and
CðtÞ þ CsðtÞ. A correlated fit of ρð770Þ and ϕð1020Þ exponen-
tials via cρe−Eρt þ cϕe−Eϕt in the region t ∈ ½11;…; 17� to CðtÞ þ
CsðtÞ yields a p value of 0.12. We use fixed energies Eρ ¼
770 MeV and Eϕ ¼ 1020 MeV and fit parameters cρ and cϕ.

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 8  9  10  11  12
tmin

cρ, p>0.05
cΦ, p>0.05

FIG. 4. Coefficients and p values of a fit of cρe−Eρt þ cϕe−Eϕt

to CðtÞ þ CsðtÞ in the region t ∈ ½tmin;…; 17�.
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Oða2Λ2
QCDÞ with ΛQCD chosen to be a few hundred MeV.

The combined effect of the finite spatial volume and
potentially missing two-pion tail is estimated using a
one-loop finite-volume (FV) lattice-regulated chiral per-
turbation theory (ChPT) version of Eq. (5.1) of Ref. [32].
Our ChPT computation also agrees with Eq. (2.12) of
Ref. [35] after correcting for a missing factor of 2 in the first
version of Ref. [35]. The ChPT result is then transformed to
position space to obtain CðtÞ. Figure 6 shows a corre-
sponding study of LT for different volumes. We take the
difference of LT¼20 on the 483 × 96 lattice used here and

LT¼48 on the 963 × 192 lattice and obtain
δaFV;ππμ ¼ 1.4 × 10−10. The remaining long-time effects
are estimated by FT¼20. We compare the result for two
fit ranges FT¼20ð½11;…; 17�Þ ¼ −1.1ð6Þ × 10−10 and
FT¼20ð½12;…; 17�Þ ¼ −0.6ð0.9Þ × 10−10. We conserva-
tively take the 1 σ bound δaFT ¼ 1.7 × 10−10 as additional
uncertainty. The fit ranges correspond to the largest mini-
mum times before losing a statistical signal, thereby
minimizing a potential excited-state contribution in our
estimate.
Combining the systematic uncertainties in quadrature,

we report our final result,

aHVP ðLOÞ disc
μ ¼ −9.6ð3.3Þð2.3Þ × 10−10; ð12Þ

where the first error is statistical and the second systematic.
Before concluding, we note that our result appears to be

dominated by very low energy scales. This is not surprising
since the signal is expressed explicitly as the difference of
light-quark and strange-quark Dirac propagators. We there-
fore expect energy scales significantly above the strange
mass to be suppressed. We already observed this above in
the dominance of low modes of the Dirac operator for our
signal. Furthermore, our result, which includes the two-
pion contributions from first principles, is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.
Conclusion.—We have presented the first ab initio

calculation of the hadronic vacuum polarization discon-
nected contribution to the muon anomalous magnetic
moment at physical pion mass. We were able to obtain
our result with modest computational effort utilizing a
refined noise-reduction technique explained above. This
computation addresses one of the major challenges for a
first-principles lattice QCD computation of aHVPμ at percent
or subpercent precision, necessary to match the anticipated
reduction in experimental uncertainty. The uncertainty of
the result presented here is already slightly below the
current experimental precision and can be reduced further
by a straightforward numerical effort.
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