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The ϕ-Λð1520Þ interference effect in the γp → KþK−p reaction has been measured for the first time in
the energy range from 1.673 to 2.173 GeV. The relative phases between ϕ and Λð1520Þ production
amplitudes were obtained in the kinematic region where the two resonances overlap. The measurement
results support strong constructive interference when KþK− pairs are observed at forward angles but
destructive interference for proton emission at forward angles. Furthermore, the observed interference
effect does not account for the

ffiffiffi
s

p ¼ 2.1 GeV bump structure in forward differential cross sections for ϕ
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photoproduction. This fact suggests possible exotic structures such as a hidden-strangeness pentaquark
state, a new Pomeron exchange, or rescattering processes via other hyperon states.

DOI: 10.1103/PhysRevLett.116.232001

The ϕ-meson production has the unique feature within
gluon dynamics of being a result of Okubo-Zweig-Iizuka
suppression due to the dominant ss̄ structure of the ϕ
meson, which is predicted to proceed via a Pomeron
trajectory with JPC ¼ 0þþ [1–7]. Cross sections for diffr-
active ϕ photoproduction are then predicted to increase
smoothly with photon energy. However, a bump structure at
ffiffiffi
s

p ¼ 2.1 GeV in forward differential cross sections was
first reported by the LEPS Collaboration [8]. Despite
extensive experimental efforts devoted for the photopro-
duction of ϕ mesons near threshold, the nature of the bump
structure has not yet been explained in detail [9,10].
Kiswandhi et al. [11] suggested that the bump structure
is the result of an excitation of missing nucleon resonances.
However, the bump structure observed from CLAS appears
only at forward angles; thus, a conventional resonance
interpretation seems less likely [10]. Very recently, the
LHCb Collaboration [12] claimed to have observed two
J=ψp resonances referred to as hidden-charm pentaquark
states (cc̄uud) from Λ0

b decays. In ϕ photoproduction, a
hidden-strangeness pentaquark state could also be searched
for as a candidate for the forward bump structure. Recent
theoretical studies further relate this to a coupling between
the ϕp and KþΛð1520Þ channels, because the bump
structure occurs very close to the threshold of Λð1520Þ
production [13,14]. The ϕ-Λð1520Þ interference could also
account for the bump structure, but it has not yet been
measured in KþK−p photoproduction. The interference
may be either positive (constructive) or negative (destruc-
tive), depending on the relative phase between the ampli-
tudes of ϕ and Λð1520Þ production.
Here, we report on the measurement of forward differ-

ential cross sections for ϕ and Λð1520Þ photoproduction
and the relative phase angles between their photoproduc-
tion amplitudes. This analysis includes the event selection
for γp → KþK−p, which was based on a kinematic fit. The
yields of ϕ and Λð1520Þ were obtained from a simulta-
neous fit of the mKþK− and mK−p invariant masses with line
shapes from a Monte Carlo simulation. This self-consistent
analysis enables the investigation of interference effects
between ϕ andΛð1520Þ. To our knowledge, no interference
measurement for this reaction has previously been reported
in the literature.
The experiment was carried out using the LEPS detector

at the SPring-8 facility in Japan. Linearly polarized photons
with energies from 1.5 to 2.4 GeV were produced using a
laser backscattering technique [15] with UV lasers. The
photon beam was incident on a 15-cm liquid-hydrogen
(LH2) target, in which Kþ, K−, and p particles were

produced and then passed through the LEPS spectrometer
with the standard configuration [16].
With a full data set of LH2 runs, an analysis on

ϕ-Λð1520Þ photoproduction was performed using kin-
ematic fits and simultaneous fits on the KþK− and K−p
mass spectra with Monte Carlo line shapes. To identify
candidate events, at least two of the Kþ, K−, and p tracks
were required to be reconstructed using standard particle
identification methods.
Mass spectra, calculated from the measured four-vectors

of detected K−, Kþ, and p, are shown in Fig. 1. The solid
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FIG. 1. Top: Scatter plots of the invariant mass of the KþK−

system versus that of the K−p system for forward K−Kþ events
(a) before and (b) after the kinematic fit. Middle: The same as the
top but for forward K−p events (c) before and (d) after the
kinematic fit. Bottom: The same as the top but for forward Kþp
events (e) before and (f) after the kinematic fit. Each scatter plot
shows the projections onto each invariant mass axis.
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lines represent ϕ and Λð1520Þ mass bands, each corre-
sponding to a 4Γϕ window for ϕ production and a 2ΓΛ�

window for Λð1520Þ production, respectively, where Γϕ ¼
4.266 MeV and ΓΛ� ¼ 15.6 MeV [17]. Forward particle
pairs correspond to the pairs mostly produced in the range
of cos θ� > 0.5, where θ� is the angle between the pair and
the beam axis in the production center of mass system.
The kinematic fit reconstructs three unmeasured param-

eters for a missing particle in the K−Kþp final state. The
energy and momentum conservation laws provide four
constraints. Consequently, we have an overdetermined
system with four constraints and three unknowns. When
the χ2 probability of kinematic fit is required to be greater
than 2%, clear ϕ and Λð1520Þ bands are seen in the
MðKþK−Þ versus the MðK−pÞ plots [see Figs. 1(b), 1(d),
and 1(f)]. For forward Kþp events [Fig. 1(e)], the back-
ground primarily represents a K�0Σþ production channel
with a small contribution from the KþΛð1520Þ channel,
followed by the Λð1520Þ → Σþπ− decay. However, very
little K� background remains after a kinematic fit is applied
[as shown by the histogram in Fig. 1(f)].
The measured KþK− and K−p mass spectra for the

selected KþK−p events were fitted with line shapes from
simulated processes of the ϕp [18], Λð1520ÞKþ [19], and
nonresonant KþK−p channels. For events in which Kþp is
detected, these mass spectra are fitted with the three
processes as well as K�0Σþ [20] and Kþ½Λð1520Þ →
Σþπ−�. The best-fit line shapes for ϕ, Λð1520Þ, and
nonresonant KþK−p well reproduce the KþK− and the
K−p mass spectra, as shown in Fig. 2. The χ2 probability
Pðχ2; ndfÞ is quoted in each of the fitted KþK− and K−p
mass spectra, where ndf represents the number of degrees
of freedom. The fits with Monte Carlo line shapes were
based on the events beyond the ϕ − Λð1520Þ interference
region in which the two resonances appear. The fit results
were then interpolated into the interference region, keeping
the magnitudes of Monte Carlo line shapes as determined
from the fit [21]. This simultaneous fit with Monte Carlo
line shapes is a self-consistent method to reproduce the
measured KþK− and K−p mass spectra, which pertains to
the further study of interference effects.
Forward differential cross sections for ϕ and Λð1520Þ

production channels were measured using the best-fit
results with Monte Carlo line shapes in the ϕ and
Λð1520Þ mass bands except for the interference region.
The forward differential cross sections (dσ=dt at t ¼ tmin)
for ϕ photoproduction are compared with previous results
from LEPS [8] near the threshold, as shown in Fig. 3(left).
Thus, we reconfirmed the existence of the bump structure
around Eγ ¼ 2.0 GeV. The structure appears persistent
even with different ϕ-mass bands, different slope param-
eters, and the exclusion of the interference region in which
ϕ and Λð1520Þ mass bands overlap. The slope parameters
of the jt − tminj distributions decreased as the photon
energy increased. The forward cross sections were obtained

from the fit with linearly energy-dependent slope param-
eters [dσ=dt ¼ dσ=dtjt¼tmin

expð−bjt − tminjÞ, where b ¼
−ð11.47 − 3.47EÞ GeV−2] and E is a dimensionless quan-
tity taken from the value of the photon energy in GeV.
Figure 3 (right) shows the differential cross sections

for Λð1520Þ photoproduction in the angular regions of
0.9 < cos θ�Kþ < 1.0 and the comparison of the previous
LEPS results by Kohri et al. [22]. While the previous
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FIG. 2. The invariant mass spectra for (top)KþK− and (bottom)
K−p systems are displayed as closed circles for forward KþK−

events in the energy region from 1.973 to 2.073 GeV, respec-
tively. The best-fit line shapes for ϕ are overlaid with dotted lines,
while those for Λð1520Þ are represented as dot-dashed lines.
Dashed lines represent the contributions of nonresonant KþK−p
production.
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analysis was based on events with a single Kþ track, the
new analysis required at least two tracks among K−, Kþ,
and p. As a result, the event statistics in this measurement at
forward Kþ angles were smaller than those from the
previous analysis. Though the statistics were low, both
results are in good agreement with the earlier analysis and
feature the bump structure near Eγ ¼ 2 GeV. Interestingly,
the two cross-section results show the bump structure at the
same Eγ , which could indicate a strong correlation between
the ϕ and Λð1520Þ. However, the difference between the
cross sections obtained with and without the interference
region is not large enough to account for the bump
structure.
The differential cross sections for the γp → KþK−p

reaction can be decomposed into

d2σ
dmKþK−dmK−p

∝ jMϕ þMΛð1520Þ þMnrj2; ð1Þ

whereMϕ andMΛð1520Þ are the complex amplitudes for ϕ
and Λð1520Þ production processes, respectively. Mnr
represents nonresonant KþK−p production. Each complex
amplitude includes individual amplitudes for all possible
subprocesses, such as Pomeron-exchange and pseudoscalar
meson-exchange processes for ϕ photoproduction.
However, log-likelihood fits of the data in ϕ and
Λð1520Þ bands excluding the ϕ and Λð1520Þ interference
region (jMϕ þMnrj2) with Monte Carlo line shapes
(jMϕj2þjMnrj2) result in the χ2 probability Pðχ2Þ>0.2
in most cases. Moreover, the S-P wave interference in ϕ
photoproduction is known to be as small as 1% [23].
Therefore, we assume that jMϕ þMΛð1520Þ þMnrj2 ≈
jMϕ þMΛð1520Þj2 þ jMnrj2, where the interference terms
betweenMnr and two resonance amplitudes are neglected.
The contribution from the term jMnrj2 was then subtracted
from the data.
The differential cross sections for the γp → KþK−p

reaction via the ϕ and Λð1520Þ resonances can be written
as [24]

d2σ
dmKþK−dmK−p

�
�
�
�
ϕ;Λð1520Þ

∝ jMϕ þMΛð1520Þj2

¼
�
�
�
�

aeiψa

m2
ϕ −m2

KþK− þ imϕΓϕ
þ beiψb

m2
Λ� −m2

K−p þ imΛ�ΓΛ�

�
�
�
�

2

;

ð2Þ
where a and b denote the magnitudes of the Breit-Wigner
amplitudes for ϕ and Λð1520Þ, respectively. Here ψa and
ψb represent phases for ϕ and Λð1520Þ production ampli-
tudes, respectively. We integrate the differential cross
sections over the K−p mass interval in the ϕ-Λð1520Þ
interference region, assuming that the phase ψb is constant
in the interference region for each energy interval. The
integrated cross sections can then be given by

dσ
dm

∝
�
�
�
�

aeiψa

m2
ϕ −m2 þ imϕΓϕ

þ BðmÞeiψb

�
�
�
�

2

; ð3Þ

where m denotes mKþK− . jBðmÞj2 corresponds to the Breit-
Wigner line shape of Λð1520Þ projected onto the KþK−

mass axis in the interference region. The interference term
IðmÞ between the two amplitude terms can be obtained
as [25]

IðmÞ ¼ 2jaBðmÞj ðm
2
ϕ −m2Þ cosψ þ Γϕmϕ sinψ

ðm2
ϕ −m2Þ2 þm2

ϕΓ2
ϕ

; ð4Þ

where ψ ¼ jψa − ψbj is the relative phase between the
phases ψa and ψb.
For the relative phase between the ϕ and Λð1520Þ

amplitudes, we fitted data in the interference region with
Eq. (4). Here, the relative amplitudes of a and BðmÞ for
each energy interval are fixed from a simultaneous fit
utilizing Monte Carlo line shapes in the ϕ and Λð1520Þ
mass bands except for the interference region.
Consequently, only a single parameter, the relative phase
ψ , exists in the fit. The best-fit results for the relative phase
are shown as solid curves in Fig. 4. To verify the reliability
of this approach, the fit results are compared with theo-
retical estimates based on the effective Lagrangian
approach [26], taking the ϕ and Λð1520Þ production
amplitudes into account. The reaction dynamics is repre-
sented by the invariant amplitudes and form factors in this
theoretical approach. The phase of ψ ¼ π=2was chosen for
simplicity. The theoretical estimates for the maximum
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FIG. 4. Difference between event yields in the interference
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events, in four 0.1-GeV-wide energy regions from 1.773 to
2.173 GeV. The best-fit results for the relative phase are overlaid
with solid curves, while dashed lines are from theoretical
estimates assuming maximum constructive ϕ-Λð1520Þ interfer-
ence with ψ ¼ π=2.
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constructive ϕ-Λð1520Þ interference are shown as dashed
curves in Fig. 4, which are consistent with those predicted
by Eq. (4).
The fit results for relative phase are represented in

Fig. 5(left). The χ2 probability was required to exceed
0.1%. For forward K−p and Kþp events, the energy
regions between 1.673 and 2.073 GeV are explored. The
maximum constructive interference has ψ ¼ π=2, while the
maximum destructive interference is represented by
ψ ¼ −π=2. For KþK− events detected in the forward
directions, the resulting relative phases are in most cases
constructive, while those for forward K�p events are
destructive.
For forward KþK− events in the energy region of

1.973 < Eγ < 2.073 GeV, the integrated event yield in
the interference region approaches close to the maximum
bound for the ϕ-Λ interference, as shown in Fig. 5 (right),
which is consistent with the relative phase ψ ¼
1.69� 0.12 rad. Moreover, the relative phase flips its
sign as a function of photon energy Eγ. For K−p events,
the relative phase in the energy region of 1.973 < Eγ <
2.073 GeV firmly stays at a positive value, while in other
energy regions it supports destructive interference. Thus, it
can be inferred that a change in interference patterns occurs
when K−p is studied at forward angles. For the Kþp
events, only in the lowest-energy region does the phase
appears in the positive side, but it remains close to π, which
corresponds to zero interference.
Different phases for different event modes (forward

KþK−, K−p, and Kþp events) may arise from differing
kinematic coverages for the photoproduction of ϕ and
Λð1520Þ. We relate the phases near π=2 for forward KþK−

events to the interference between the Pomeron-exchange
amplitude for ϕ and theK-exchange amplitude forΛð1520Þ
photoproduction. For forward proton events (K−p and
Kþp), unnatural-parity exchange processes become

important in ϕ photoproduction. However, it is worth
noting that the ϕ-Λð1520Þ interference effect does not
account for the 2.1-GeV bump structure in forward differ-
ential cross sections for ϕ photoproduction. This result is
consistent with a recent report from CLAS regarding the
Λð1520Þ effect [10]. The energy dependence of the phase
may indicate nontrivial rescattering contributions from
other hyperon resonances. The bump structure could then
be associated with either rescattering processes due to
kinematic overlap in phase space or exotic structures
involving a hidden-strangeness pentaquark state and the
exchange of a new Pomeron. Alternatively, they could be
due to a combination of both factors.
In summary, the photoproduction of the γp → KþK−p

reaction was measured using the LEPS detector at energies
from 1.57 to 2.40 GeV. The ϕ-Λð1520Þ interference
measurement is a good probe to study the origin of
enhanced production cross sections for ϕ and Λð1520Þ
near

ffiffiffi
s

p ¼ 2.1 GeV. In this Letter, we presented relative
phases between ϕ and Λð1520Þ production amplitudes by
using a two-dimensional mass fit with Monte Carlo line
shapes. We reconfirmed the bump structure in the analysis
without the ϕ-Λð1520Þ interference region. On the other
hand, we observed clear ϕ-Λð1520Þ interference effects in
the energy range from 1.673 to 2.173 GeV. The data
obtained in the present study provide the first-ever exper-
imental evidence for the ϕ-Λð1520Þ interference effect in ϕ
photoproduction. The relative phases suggest strong con-
structive interference for KþK− pairs observed at forward
angles, while destructive interference results from the
emission of protons at forward angles. The nature of the
bump structure could originate from interesting exotic
structures such as a hidden-strangeness pentaquark state,
a new Pomeron exchange, or rescattering processes via
other hyperon states.
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