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It has recently been shown that Bondi–van der Burg–Metzner–Sachs supertranslation symmetries imply
an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian
spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) super-
translation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an
explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows
that complete information about their quantum state is stored on a holographic plate at the future boundary
of the horizon. Charge conservation is used to give an infinite number of exact relations between the
evaporation products of black holes which have different soft hair but are otherwise identical. It is further
argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a
physically realizable process, giving an effective number of soft degrees of freedom proportional to the
horizon area in Planck units.
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Introduction.—Forty years ago, one of the authors
argued [1] that information is destroyed when a black hole
is formed and subsequently evaporates [2,3]. This con-
clusion seems to follow inescapably from an “unquestion-
able” set of general assumptions such as causality, the
uncertainty principle, and the equivalence principle.
However it leaves us bereft of deterministic laws to
describe the Universe. This is the infamous information
paradox.
Over the intervening years, for a variety of reasons, the

initial conclusion that information is destroyed has become
widely regarded as implausible. Despite this general senti-
ment, in all this time there has been neither a universally
accepted flaw discovered in the original argument of [1] nor
an a priori reason to doubt any of the “unquestionable”
assumptions on which it is based.
Recently such an a priori reason for doubt has emerged

from new discoveries about the infrared structure of
quantum gravity in asymptotically flat spacetimes. The
starting point goes back to the 1962 demonstration by
Bondi, van der Burg, Metzner, and Sachs (BMS) [4] that
physical data at future or past null infinity transform
nontrivially under, in addition to the expected Poincaré
transformations, an infinite set of diffeomorphisms known
as supertranslations. These supertranslations separately
shift forward or backward in retarded (advanced) time
the individual light rays comprising future (past) null
infinity. Recently it was shown [5], using new mathematical
results [6] on the structure of null infinity, that a certain
antipodal combination of past and future supertranslations
is an exact symmetry of gravitational scattering. The
concomitant infinite number of “supertranslation charge”
conservation laws equate the net incoming energy at any

angle to the net outgoing energy at the opposing angle. In
the quantum theory, matrix elements of the conservation
laws give an infinite number of exact relations between
scattering amplitudes in quantum gravity. These relations
turned out [7] to have been previously discovered by
Weinberg in 1965 [8] using Feynman diagrammatics and
are known as the soft graviton theorem. The argument may
also be run backwards: starting from the soft graviton
theorem one may derive both the infinity of conservation
laws and supertranslation symmetry of gravitational
scattering.
This exact equivalence has provided fundamentally new

perspectives on both BMS symmetry and the soft graviton
theorem, as well as more generally the infrared behavior of
gravitational theories [5,7,9–40]. Supertranslations trans-
form the Minkowski vacuum to a physically inequivalent
zero-energy vacuum. Since the vacuum is not invariant,
supertranslation symmetry is spontaneously broken. The
soft (i.e., zero-energy) gravitons are the associated
Goldstone bosons. The infinity of inequivalent vacua differ
from one another by the creation or annihilation of soft
gravitons. They all have zero energy but different angular
momenta. (None of these vacua are preferred, and each is
annihilated by a different Poincaré subgroup of BMS. This
is related to the lack of a canonical definition of angular
momentum in general relativity.)
Although originating in a different context these obser-

vations do provide, as discussed in [9,10], a priori reasons
to doubt the “unquestionable” assumptions underlying the
information paradox:
(i) The vacuum in quantum gravity is not unique. The

information loss argument assumes that after the evaporation
process is completed, the quantum state settles down to a
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unique vacuum. In fact, the process of black hole formation
or evaporation will generically induce a transition among the
infinitely degenerate vacua. In principle, the final vacuum
state could be correlated with the thermal Hawking radiation
in such a way as to maintain quantum purity.
(ii) Black holes have a lush head of “soft hair.” The

information loss argument assumes that static black holes
are nearly bald; i.e., they are characterized solely by their
mass M, charge Q, and angular momentum J. The no-hair
theorem [41] indeed shows that static black holes are
characterized by M, Q, and J up to diffeomorphisms.
However, BMS transformations are diffeomorphisms
which change the physical state. A Lorentz boost for
example maps a stationary black hole to an obviously
physically inequivalent black hole with different energy
and nonzero momentum. Supertranslations similarly map a
stationary black hole to a physically inequivalent one. In
the process of Hawking evaporation, supertranslation
charge will be radiated through null infinity. Since this
charge is conserved, the sum of the black hole and radiated
supertranslation charge is fixed at all times. (In the quantum
theory the state will typically not be an eigenstate of the
supertranslation charge operator, and the conservation law
becomes a statement about matrix elements.) This requires
that black holes carry what we call soft hair arising from
supertranslations. Moreover, when the black hole has fully
evaporated, the net supertranslation charge in the outgoing
radiation must be conserved. This will force correlations
between the early- and late-time Hawking radiation, gen-
eralizing the correlations enforced by overall energy-
momentum conservation. Such correlations are not seen
in the usual semiclassical computation. Put another way, if
the evolution of a spacetime in which a black hole forms
and then evaporates is to be unitary, then viewed as a
scattering amplitude from I− to Iþ, it must be constrained
by the soft graviton theorem and its descendants.
Of course, finding a flawed assumption underlying the

information loss argument is a far cry from resolving the
information paradox. That would require, at a minimum, a
detailed understanding of the information flow out of black
holes as well as a derivation of the Hawking-Bekenstein
area-entropy law [2,3,42]. In this Letter we take some steps
in that direction.
In the same 1965 paper cited above [8], Weinberg also

proved the “soft photon” theorem. This theorem implies
[43–47] an infinite number of previously unrecognized
conserved quantities in all Abelian gauge theories—
electromagnetic analogs of the supertranslation charges.
By a direct analog of the preceding argument black holes
must carry a corresponding “soft electric hair.” The
structure in the electromagnetic case is very similar, but
technically simpler, than the gravitational one. In this Letter
we mainly consider the electromagnetic case, outlining the
gravitational case in the penultimate section. Details of soft
supertranslation hair will appear elsewhere.

The problem of black hole information has been fruit-
fully informed by developments in string theory. In
particular it was shown [48] that certain string-theoretic
black holes store complete information about their quantum
state in a holographic plate that lives at the horizon.
Moreover the storage capacity was found to be precisely
the amount predicted by the Hawking-Bekenstein area-
entropy law. Whether or not string theory in some form is a
correct theory of nature, the holographic method it has
presented to us of storing information on the black hole
horizon is an appealing one, which might be employed by
real-world black holes independently of the ultimate status
of string theory.
Indeed, in this Letter we show that soft hair has a natural

description as quantum pixels in a holographic plate. The
plate lives on the two-sphere at the future boundary of the
horizon. Exciting a pixel corresponds to creating a spatially
localized soft graviton or photon on the horizon, and may
be implemented by a horizon supertranslation or large
gauge transformation. In a physical setting, the quantum
state of the pixel is transformed whenever a particle crosses
the horizon. The combination of the uncertainty principle
and cosmic censorship requires all physical particles to be
larger than the Planck length, effectively setting a minimum
spatial size for excitable pixels. This gives an effective
number of soft hairs proportional to the area of the horizon
in Planck units and hints at a connection to the area-
entropy law.
It is natural to ask whether or not the supertranslation

pixels could conceivably store all of the information that
crosses the horizon into the black hole. We expect the
supertranslation hair is too thin to fully reproduce the area-
entropy law. However there are other soft symmetries such
as superrotations [11,12,49–51] which lead to thicker kinds
of hair as discussed in [10]. Superrotations have not yet
been fully studied or understood. It is an open question
whether or not the current line of investigation, perhaps
with additional new ingredients, can characterize all the
pixels on the holographic plate.
This Letter is organized as follows. In the next section,

we review the analog of BMS symmetries in Maxwell
theory, which we refer to as large gauge symmetries. The
associated conserved charges and their relation to the soft
photon theorem are presented. We then construct the extra
terms in the conserved charges needed in the presence of a
black hole, and show that they create a soft photon, i.e.,
excite a quantum of soft electric hair on the horizon. Next,
we consider evaporating black holes, and present a deter-
ministic formula for the effect of soft hair on the outgoing
quantum state at future null infinity. We consider physical
processes which implant soft hair on a black hole, and
argue that a hair much thinner than a Planck length cannot
be implanted. We then discuss the gauge dependence of our
conclusions, and we present a few formulas from the
generalization from large gauge symmetries and soft
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photons to BMS supertranslations and soft gravitons. In the
final section, we briefly conclude.
Electromagnetic conservation laws and soft

symmetries.—In this section we set conventions and review
the conservation laws and symmetries of Abelian gauge
theories in Minkowski space.
The Minkowski metric in retarded coordinates ðu; r; z; zÞ

near future null infinity ðIþÞ reads
ds2 ¼ −dt2 þ ðdxiÞ2 ¼ −du2 − 2dudrþ 2r2γzzdzdz; ð1Þ
where u is retarded time and γzz is the round metric on the
unit radius S2. These are related to standard Cartesian
coordinates by

r2 ¼ xixi; u ¼ t − r; xi ¼ rx̂iðz; zÞ: ð2Þ
Advanced coordinates ðv; r; z; zÞ near past null infinity
ðI−Þ are
ds2 ¼ −dv2 þ 2dvdrþ 2r2γzzdzdz; r2 ¼ xixi;

v ¼ tþ r; xi ¼ −rx̂iðz; zÞ: ð3Þ
Iþ (I−) is the null hypersurface r ¼ ∞ in retarded
(advanced) coordinates. Because of the last minus sign
in (3) the angular coordinates on Iþ are antipodally related
to those on I− so that a light ray passing through the
interior of Minkowski space reaches the same value of z, z
at both Iþ and I−. [In coordinates with γzz ¼ 2=ð1þ zzÞ2,
the antipodal map is z → −1=z.] We denote the future
(past) boundary of Iþ by Iþ

þ (Iþ
− ), and the future (past)

boundary of I− by I−þ (I−
−). We use conventions for the

Maxwell field strength F ¼ dA and charge current one-
form j in which d � F ¼ e2 � j (or ∇aFab ¼ e2jb) with e
the electric charge and � the Hodge dual.
Conserved charges can be constructed as surface integrals

of �F near spatial infinity i0. However caremust be exercised
as r2F is discontinuous near i0 and its value depends on the
direction from which it is approached. For example,
approaching Iþ

− from Iþ, the radial Lienard-Wiechert
electric field for a collection of inertial particles with charges
ek and velocities ~vk is, to leading order at large r,

Frt ¼
e

4πr2
X
k

ekð1 − ~v2kÞ
ð1 − ~vk · x̂Þ2

; ð4Þ

while going to I−þ from I− gives

Frt ¼
e

4πr2
X
k

ekð1 − ~v2kÞ
ð1þ ~vk · x̂Þ2

: ð5Þ

All fields may be expanded in powers of 1=r near I. We here
and hereafter denote the coefficient of 1=rn by a superscript
ðnÞ. In coordinates (2), (3), the electric field in general obeys
the antipodal matching condition

Fð2Þ
ru ðz; zÞjIþ

−
¼ Fð2Þ

rv ðz; zÞjI−
þ
: ð6Þ

Equation (6) is invariant under both CPT and Poincaré
transformations.

The matching conditions (6) immediately imply an
infinite number of conservation laws. For any function
εðz; zÞ on S2 the outgoing and incoming charges defined by

Qþ
ε ¼ 1

e2

Z
Iþ
−

ε � F

Q−
ε ¼ 1

e2

Z
I−
þ
ε � F ð7Þ

are conserved,

Qþ
ε ¼ Q−

ε : ð8Þ
(Here ε is antipodally continuous from Iþ

− to I−þ. A second
infinity of conserved charges involving the replacement of
F with �F [47] leads to soft magnetic hair on black holes.
This is similar to soft electric hair but will not be discussed
herein.) Qþ

ε (Q−
ε ) can be written as a volume integral over

any Cauchy surface ending at Iþ
− (I−þ). In the absence of

stable massive particles or black holes, Iþ (I−) is a Cauchy
surface. Hence in this case

Qþ
ε ¼ 1

e2

Z
Iþ

dε∧ � F þ
Z
Iþ

ε � j;

Q−
ε ¼ 1

e2

Z
I−

dε∧ � F þ
Z
I−

ε � j: ð9Þ

Here we define ε on all of I by the conditions
∂uε ¼ 0 ¼ ∂vε. The first integrals on the right-hand sides
are zero modes of the field strength �F and hence
correspond to soft photons with polarizations dε. In
quantum field theory, (8) is a strong operator equality
whose matrix elements are the soft photon theorem [43,44].
The special case ε ¼ const corresponds to global charge
conservation.
The charges generates a symmetry under which the

gauge field Az on Iþ transforms as [43,44]

½Qþ
ε ; Azðu; z; zÞ�Iþ ¼ i∂zεðz; zÞ: ð10Þ

[The commutator follows from the standard symplectic
two-form ω ¼ −ð1=e2Þ RΣ δA∧ � dδA, where δA is a one-
form on phase space and Σ is a Cauchy surface.] We refer to
this as large gauge symmetry. It is the electromagnetic
analog of BMS supertranslations in gravity. This symmetry
is spontaneously broken and the zero modes of Az—the soft
photons—are its Goldstone bosons. An infinite family of
degenerate vacua are obtained from one another by the
creation or annihilation of soft photons.
Conservation laws in the presence of black holes.—In

this section we construct the extra term which must be
added to the volume integral expression (9) for the
conserved charges (7) in the presence of black holes.
When there are stable massive particles or black holes,

Iþ is not a Cauchy surface and a boundary term is needed
at Iþ

þ in (9). This problem was addressed for massive
particles in [45] where the harmonic gauge condition was
used to extend ε into neighborhood of iþ and demonstrate
the equivalence of (8) with the soft photon theorem
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including massive charged particles. An alternate gauge-
invariant demonstration was given in [46]. In this Letter we
seek the extra term for black hole spacetimes. A simple
example of a black hole spacetime, depicted in Fig. 1, is the
Vaidya geometry [52] in which a black hole is formed by
the collapse of a null shell of neutral matter at advanced
time v ¼ 0,

ds2¼−(1−
2MΘðvÞ

r )dv2þ2dvdrþ2r2γzzdzdz; ð11Þ

where Θ ¼ 0 (Θ ¼ 1) before (after) the shell at v ¼ 0, and
M is the total mass of the shell. The event horizon H
originates at r ¼ 0, v ¼ −4M, continues along r ¼ v=2þ
2M until v ¼ 0 after which it remains at r ¼ 2M. In the
absence of massive fields (to which case we restrict for
simplicity) which can exit through iþ, Iþ∪H is a Cauchy
surface. H has an S2 boundary in the far future which we
denote Hþ. Later we will see Hþ functions as the holo-
graphic plate. In order to define charges other than on a
Cauchy surface Σ, we must have a way of propagating the
residual gauge transformation ε off that surface into the
Cauchy development of Σ, DþðΣÞ. In the Lorenz gauge,
∇aAa ¼ 0, ε obeys □ε ¼ 0. Hence specifying the Cauchy
data for ε allows us to compute ε in DþðΣÞ.
We define a horizon charge as an integral over Hþ

QH
ε ¼ 1

e2

Z
Hþ

ε � F: ð12Þ

This commutes with the Hamiltonian and hence carries
zero energy. Extending ε overH by taking it to be constant
along the null generators, integration by parts yields

QH
ε ¼ 1

e2

Z
H
dε∧ � F þ

Z
H
ε � j: ð13Þ

The first term creates a soft photon on the horizon with
spatial polarization dε:QH

ε generates large gauge trans-
formations on the horizon,

½QH
ε ; Az�H ¼ i∂zε: ð14Þ

At the classical level, the no-hair theorem implies for any
black hole horizon that QH

ε ¼ 0, except for the constant
l ¼ 0 mode of ε in the case of a charged black hole. [One
may also associate (nonconserved) charges with two-
spheres in the horizon other than Hþ. If chosen during
formation or evaporation when the horizon is evolving
these charges will in general be nonzero.] One might be
tempted to conclude that the charges for the l > 0 mode
all act trivially in the quantum theory. This would be the
wrong conclusion. To see why, let us return momentarily to
Minkowski space and consider Qþ

ε . Classically in the
vacuum there are no electric fields and Qþ

ε ¼ 0.
However neither the electric field nor Qþ

ε vanish as
operators. Acting on any vacuum j0i one has

Qþ
ε j0i ¼

�
1

e2

Z
Iþ

dε∧ � F
�
j0i ≠ 0; ð15Þ

which is a new vacuum with an additional soft photon of
polarization dε. Note that the vanishing expectation value
h0jQþ

ε j0i ¼ 0 is consistent with the classical vanishing of
the charge. Similar observations pertain to the black hole
case. Let jMi denote the incoming quantum state of a black
hole defined on H. We take it to be formed with neutral
matter so that j ¼ 0 on H. Then

QH
ε jMi ¼

�
1

e2

Z
H
dε∧ � F

�
jMi ≠ 0 ð16Þ

is jMi with an additional soft photon of polarization dε. We
refer to this feature, which distinguishes stationary black
holes of the same mass, as soft electric hair.
Black hole evaporation.—The preceding section gave a

mathematical description of soft electric hair. In this section
we show that it is physically measurable and therefore not a
gauge artefact.
One way to distinguish the states jMi and QH

ε jMi is to
look at their outgoing evaporation products. (An alternate
possibility involves the memory effect. Soft photons
exiting at Iþ can be measured using the electromagnetic
memory effect [53–55]. The effect falls off like 1=r so the
measurement must be done near, but not on, Iþ. Similarly
we expect a black hole memory effect, enabling the
measurement of soft photons on the stretched horizon.)
So far we have not let the black holes evaporate. We work
near the semiclassical limit so that the formation process is
essentially complete long before the evaporation turns on.
We may then divide the spacetime into two regions via a
spacelike splice which intersects Iþ and the (apparent)
horizon at times us and vs long after classical apparent
horizon formation is complete but long before Hawking
quanta are emitted in appreciable numbers, as depicted in
Fig. 2. We denote byH< the portion of the horizon prior to

FIG. 1. Penrose diagram for a black hole formed by gravita-
tional collapse. The blue line is the event horizon. The red line
indicates a null spherical shell of collapsing matter. Spacetime is
flat prior to collapse and Schwarzschild after. The event horizon
H and the S2 boundaries I�

� of I� are indicated. I− and Iþ∪H
are Cauchy surfaces for massless fields.
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vs and Iþ
< (with vacuum j0<i) and Iþ

> the portions of Iþ
before and after us. S is the region between Iþ and the
horizon extending from us to vs (the horizontal part of the
yellow line in Fig. 2) so that Iþ

<∪H<∪S is a Cauchy slice
terminating at Iþ

− [56]. We denote the sphere at the future
boundary v ¼ vs of H< by Hs.
For a black hole formed by a spherically symmetric

collapse as in (11), no radiation appears on Iþ until
Hawking radiation turns on after us. The incoming quan-
tum state of the black hole, denoted jMi and defined as a
state in the Hilbert space on H<, is then a pure state
uncorrelated with the vacuum state on Iþ

<. After a long time
evolution, jMi fully evaporates into some pure (assuming
unitarity) outgoing state jXi of total energyM supported on
Iþ
>. Currently, there is no known algorithm for computing

jXi, although it is presumably some typical microstate in
the thermal ensemble of states produced by the probabi-
listic Hawking computation. On the other hand, the no-hair
theorem, together with causality and a few other basic
assumptions, seems to assert that jXi depends only the total
massM and is insensitive to the details of the quantum state
jMi. This is the information paradox. We now show that
this assertion fails in a predictable manner due to soft hair.

Consider a second state

jM0i ¼ QH<
ε jMi; ð17Þ

where QH<
ε ¼ ð1=e2Þ RHs

ε � F. Since no charges were
involved in the formation of jMi, jjH vanishes and the
action of QH<

ε creates a soft photon on the horizon. Hence
jM0i and jMi differ only by a soft photon and are
energetically degenerate. [They are energetically degener-
ate up to corrections of order 1=us, which we assume to be
negligible. The two states do carry different angular
momentum. This however is not the primary origin of
their difference: in a more complicated example, we might
have added several soft photons with zero net angular
momentum and still been able to distinguish the resulting
final state.] jM0i eventually evaporates to some final state
which we denote jX0i supported on Iþ

>.
We wish to use charge conservation to relate the two

outgoing states jX0i and jXi. Since in the very far future
there is nothing at iþ we may write (using the green Cauchy
surface in Fig. 2)

Qþ
ε ¼ QIþ

ε ¼ QIþ
<

ε þQIþ
>

ε þQiþ
ε ; ð18Þ

where the last three terms denote volume integrals

Q
Iþ
>;<;i

þ
ε ¼ 1

e2

Z
Iþ
>;<;i

þ
dε∧ � F þ

Z
Iþ
>;<;i

þ
ε � j: ð19Þ

But since we are only looking at massless fields, we expect
Qiþ

ε ¼ 0. On the other hand, approximating the yellow
Cauchy surface in Fig. 2 by Iþ

<∪H<∪S we may also write

Qþ
ε ¼ QIþ

<
ε þQH<

ε þQS
ε ; ð20Þ

whereQS
ε is the charge on S by a formula analogous to (19)

but now taken over S. Comparing (18) and (20) it follows
that [57]

jX0i ¼ QIþ
>

ε jXi: ð21Þ
We note that the action of QIþ

>
ε on jXi involves both hard

and soft pieces and can be quite nontrivial.
In writing (20) we use the gauge parameter ε defined on

H in Eq. (12) in the coordinates (11). In principle, as was
demonstrated for the analysis of massive particles at Iþ
[46], physical observables should not depend on how the
gauge parameter is extended into the interior from Iþ. This
is discussed below where some consistency checks for
gauge invariance are given.
In this section we have made several simplifying

assumptions and approximations including that classical
black hole formation and quantum evaporation can be
temporally separated, that Iþ

<∪H< is a Cauchy surface, and
that the collapse is spherically symmetric. It is important to
stress that the existence of an infinite number of determin-
istic relations between incoming black hole states and their
outgoing evaporation products is independent of these
restrictions and assumptions. It follows solely from the
exact equality of the two expressions for the charge as

FIG. 2. Penrose diagram for a semiclassical evaporating black
hole, outlined in blue. The red arrows denote the classical
collapsing matter and the orange arrows the outgoing quantum
Hawking radiation. The horizontal dashed line divides the space-
time into two regions long after classical black hole formation is
complete and long before the onset of Hawking evaporation. The
conserved chargesQþ

ε defined at Iþ
− can be evaluated as a volume

integral either over thegreen slice comprisingIþ or the yellow slice
involving the classical part of the horizonH<. The equality of these
two expressions yields infinitely many deterministic constraints on
the evaporation process.
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volume integrals on the early (yellow) and late (green)
Cauchy slices. The purpose of the approximations and
assumptions was simply to find a context in which a
concise and simple statement of the consequences of charge
conservation could be made.
In summary, once we have determined the outgoing state

arising from jMi, we can predict the exact outgoing state
arising from the action of a large gauge transformation of
jMi, even though the resulting state is energetically
degenerate. This contradicts the assertion that the outgoing
state depends only on the total mass M. The assertion fails
because it was based on the quantum-mechanically false
assumption that black holes have no hair. This is the content
of the statement that quantum black holes carry soft
electric hair.
Quantum hair implants.—In the preceding section we

demonstrated that black holes with different numbers of
horizon soft photons are distinguishable. In this section we
show that the soft photon modes on the horizon can be
indeed excited in a physically realizable process, as long as
their spatial extent is larger than the Planck length Lp.
Soft photons at Iþ are excited whenever charge crosses

Iþ with an l > 0 angular momentum profile. Similarly,
soft photons on the horizon are excited whenever charge is
thrown into the black hole with an l > 0 angular momen-
tum profile. To see this, consider a null shock wave thrown
into the black hole geometry (11) at v ¼ v0 > 0, with
divergence-free charge current in an angular momentum
eigenstate

jv ¼
Ylmðz; zÞ

r2
δðv − v0Þ ð22Þ

with l > 0 and Ylm the usual spherical harmonics. We
neglect the backreaction of the shell and consequent
electromagnetic field on the geometry. The leading
large-r constraint equation for the Maxwell field on I−

may then be written

∂vF
ð2Þ
rv þ γzzð∂zF

ð0Þ
zv þ ∂zF

ð0Þ
zv Þ ¼ e2jð2Þv : ð23Þ

We wish to consider initial data with no photons, hard or

soft, which means Fð0Þ
zv ¼ 0. This implies the 1=r2 coef-

ficient of the electric field is

Fð2Þ
rv ¼ e2YlmΘðv − v0Þ: ð24Þ

In general the shell will produce radiation into both Iþ and
H. The no-hair theorem implies that in the far future of both
Iþ and H

FvrjHþ ¼ Fð2Þ
ur jIþ

þ
¼ 0: ð25Þ

Integrating the constraints on Iþ and using the matching
condition (6) then implies that

∂z

Z
∞

−∞
dvFð0Þ

zv þ ∂z

Z
∞

−∞
dvFð0Þ

zv ¼ γzze2Ylm: ð26Þ

The solution of this is

Z
∞

−∞
dvFð0Þ

zv ¼ −
e2

lðlþ 1Þ ∂zYlm; ð27Þ

or equivalently in form notationZ
Iþ

F∧⋆̂dYl0m0 ¼ e2δll0δmm0 ; ð28Þ

where ⋆̂ is the Hodge dual on S2. This Iþ zero mode of Fð0Þ
zv

corresponds to a soft photon with polarization vector
proportional to ∂zYlm. Similarly integrating d � F ¼ e2 �
j over H with j given by (22) yieldsZ

H
F∧⋆̂dYl0m0 ¼ e2δll0δmm0 : ð29Þ

This is a soft photon on the horizon with polarization vector
proportional to ∂zYlm. It is created by the soft part of the
charge operator QH

εlm with

εlm ¼ −
e2

lðlþ 1ÞYlm: ð30Þ

It is interesting to note that not all horizon soft photons
can be excited in this manner. Suppose we want to excite a
soft photon whose wave function is localized within as
small as possible a region of area L2 on the black hole
horizon. Then we must send in a charged particle whose
cross-sectional size is L as it crosses the horizon. However,
no particle can be localized in a region smaller than either
its Compton wavelength ℏ=M or its Schwarzschild radius
ML2

p. The best we can do is to send in a small charged
black hole of Planck size Lp and Planck massMp. This will
excite a soft photon of spatial extent Lp (or larger) on the
horizon. We cannot excite soft photons whose size is
parametrically smaller than the Planck length. It follows
that the effective number of soft photon degrees of freedom
is at most of order the horizon area in Planck units. This is a
tantalizing hint of a possible connection to the Hawking-
Bekenstein area-entropy law.
Gauge invariance.—In this section we consider the

relation of the gauge parameters on I and H. In principle
no physical conclusions should depend on how we con-
tinue large gauge transformations at I to the horizon. In the
above we used εjH ¼ εjI− in advanced coordinates (11).
Suppose we instead took

εjH ¼ αεjI− ; ð31Þ
for some constant α. Then we would have

Qþ
ε ¼ QIþ

ε þQH
αε: ð32Þ

On the other hand the soft photon we implanted in the
preceding section would be created by the action of QH

εlm=α

instead of just QH
εlm . Repeating the argument from our

discussion of black hole evaporation using (32), one would
then find that the hair implant would affect the final state of

the black hole evaporation by the action of QIþ
>

εlm . Hence the
factors of α cancel as required by gauge invariance. These

PRL 116, 231301 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
10 JUNE 2016

231301-6



conclusions would remain even if εjhorizon were a nonlocal
or angular-momentum-dependent function of εjI− . For
example we might have taken εjH ¼ εjIþ using
α ∼ ð−Þl. However the chosen identification

εjH ¼ εjI− ð33Þ
in advanced coordinates is natural because excitations of
the horizon are naturally sent in from I−, and large gauge
transformations onH are simply connected to those on I−.
To see this consider the charged shock wave, but instead of
solving the constraints with a radial electric field as in (24),
let us instead take

Fvz ¼ ∂zεlmδðv − v0Þ; Fvr ¼ 0: ð34Þ
Then the electromagnetic field is in the vacuum both before
and after the shock wave. However, the gauge potential
must shift. In temporal gauge Av ¼ 0 we have

Az ¼ Θðv − v0Þ∂zεlm: ð35Þ
This equation is valid on both I− andH. The shock wave is
a domain wall that interpolates between two vacua which
differ by a large gauge transformation parameterized by
εlm. (A discussion of domain walls interpolating between
BMS-inequivalent vacua, and their relation to gravitational
memory, was given in [9].) In this context εlm naturally
obeys (33).
Supertranslations.—The situation for BMS supertrans-

lations is very similar. We give an overview here; details
will appear elsewhere.
BMS supertranslations [4] are diffeomorphisms which

act infinitesimally near Iþ as

ζf ¼ f∂u −
γzz

r
ð∂zf∂z þ ∂zf∂zÞ þ � � � ; ð36Þ

where fðz; zÞ is any function on S2. The indicated correc-
tions are further subleading in 1=r and depend on the gauge
choice. The extension of this to I− obeying

ζf ¼ f∂v þ
γzz

r
ð∂zf∂z þ ∂zf∂zÞ þ…; ð37Þ

where, as in (2), (3), z near I− is antipodally related to z
on Iþ.
The metric in the neighborhood of the horizon H may

always be written [60]

ds2 ¼ 2dvdrþ gABdxAdxB þOðr − rHÞ; ð38Þ
with the horizon located at r ¼ rH, v an (advanced) null
coordinate onH, r an affine ingoing null coordinate, and xA

(A, B ¼ 1, 2) spatial coordinates on H. We define horizon
supertranslations by

ζ ¼ f∂v − ðr − rHÞgAB∂Af∂B þ… ð39Þ
where here the gauge-dependent corrections are suppressed
by further powers of ðr − rHÞ. These diffeomorphisms
preserve the form (38) of the metric. Horizon supertrans-
lations have been studied from a variety of viewpoints in
[25,61–63]. Some of these authors allow f to depend on v.

However, as we saw in the Maxwell case, the charge can be
written as a surface integral on the future boundary Hþ of
H. This implies that—in the context we consider—the
charges associated to the extra symmetries associated with
v-dependent f S vanish identically and are trivial even in
the quantum theory. So for our purposes it suffices to
restrict this freedom and impose ∂vf ¼ 0. We note that the
ingoing expansion on H, θr ¼ 1

2
gAB∂rgAB, transforms

inhomogeneously under supertranslations,

δfθrjH ¼ −D2f; ð40Þ
whereD2 is the Laplacian on the horizon. Hence θr may be
viewed as the Goldstone boson of spontaneously broken
supertranslation invariance.
We wish to compute the general-relativistic symplectic

structure ω of linearized metric variations on the solution
space with horizon supertranslations (39). The general
expression for two metric variations hab and h0cd around
a fixed background metric gef is [64–66]

ωðh; h0Þ ¼
Z
Σ
�Jðh; h0Þ; ð41Þ

where Σ is a Cauchy surface and J ¼ Jadxa is the
symplectic one-form. Naively ω should vanish if either
h or h0 are pure gauge. However this is not quite the case if
the diffeomorphism ζ does not vanish at the boundary of Σ.
One finds

�Jðh; ζÞ ¼ −
1

16πG
d � F ; ð42Þ

where

F ¼ 1

2
hdζ − dh∧ζ þ ðζc∇ahcb þ hcb∇cζa

− ζa∇chcbÞdxa∧dxb: ð43Þ
This gives the symplectic form

ωðh; ζÞ ¼ −
1

16πG

Z
∂Σ

�F : ð44Þ

Wald and Zoupas [66] derive from this a formula for the
differential charge associated to the diffeomorphism ζ,
which for supertranslations is simply integrated to
Qf ¼ ωðg; ζfÞ. For Iþ

− this reproduces the familiar formula
in Bondi coordinates Qþ

f ¼ ð1=4πGÞ RIþ
−
d2zγzzfmB with

mB the Bondi mass aspect. For Σ ¼ H and ζ the horizon
supertranslation (39), this reduces to

QH
f ¼ −

1

16πG

Z
Hþ

d2x
ffiffiffi
g

p
fgAB∂vhAB: ð45Þ

QH
f , like QH

ε , vanishes for all stationary classical
solutions [14,67]. Hence stationary black holes do not
carry classical supertranslation hair, just as they do not
carry classical electric hair. However, as in the electric case,
the action ofQH

f creates soft gravitons on the horizon. From
this point forward, the argument that black holes carry soft
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supertranslation hair proceeds in a nearly identical fashion
to the electromagnetic case.
Conclusion.—We have reconsidered the black hole

information paradox in light of recent insights into the
infrared structure of quantum gravity. An explicit descrip-
tion has been given of a few of the pixels in the holographic
plate at the future boundary of the horizon. Some infor-
mation is accessibly stored on these pixels in the form of
soft photons and gravitons. A complete description of the
holographic plate and resolution of the information paradox
remains an open challenge, which we have presented new
and concrete tools to address.
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