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We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two
free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like
LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density
of 5.2� 0.1 fm s−2=

ffiffiffiffiffiffi
Hz

p
, or ð0.54� 0.01Þ × 10−15 g=

ffiffiffiffiffiffi
Hz

p
, with g the standard gravity, for frequencies

between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5
andwithin a factor 1.25 of the requirement for the LISAmission, and is compatiblewithBrownian noise from
viscous damping due to the residual gas surrounding the test masses. Above 60mHz the acceleration noise is

dominated by interferometer displacement readout noise at a level of ð34.8� 0.3Þ fm=
ffiffiffiffiffiffi
Hz

p
, about 2 orders

of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below

12 fm s−2=
ffiffiffiffiffiffi
Hz

p
down to 0.1 mHz. This performance would allow for a space-based gravitational wave

observatory with a sensitivity close to what was originally foreseen for LISA.

DOI: 10.1103/PhysRevLett.116.231101

I. INTRODUCTION

LISA Pathfinder [1] (LPF) is a European Space Agency
mission launched on December 3, 2015 and dedicated to an
end-to-end experimental demonstration of the free fall of
test masses (TMs) at the level required for a future
space-based gravitational wave (GW) observatory, such
as LISA [2]. The TMs in LISA are the reference bodies at
the ends of each interferometer arm, and need to be free
from spurious acceleration, g, relative to their local inertial
frame, any such acceleration being in direct competition
with the tidal deformations caused by GWs. The LPF
spacecraft has two LISA TMs at the ends of a short
interferometer arm, insensitive to GWs because of the
reduced length, but sensitive to the differential acceleration,
Δg, of the TMs arising from parasitic forces.
The logic of the mission is to perform these experiments

with hardware that can be transferred to the final observa-
tory and with only a slight relaxation of the test require-
ments imposed by programmatic constraints. While the
LISA design specifies a single TM acceleration noise
with the square root of the power spectral density, a
quantity we call amplitude spectral density (ASD), below
3 fm s−2=

ffiffiffiffiffiffi
Hz

p
at 0.1 mHz, the lowest frequency of its

measurement band, the LPF differential acceleration noise
requirement was relaxed to 30 fm s−2=

ffiffiffiffiffiffi
Hz

p
at 1 mHz.

Increasing the minimum frequency to 1 mHz reduced the
time and difficulty of industrial testing, and the increase
in the allowed noise floor—a relaxation of ∼7 from
LISA—allows for limitations inherent to a single spacecraft
experiment, as discussed below. LPF is also required to
demonstrate a laser interferometric readout of the relative
TM motion, with noise below 9 pm=

ffiffiffiffiffiffi
Hz

p
above 3 mHz,

approaching the performance required for the local test
mass position readout in LISA.
Following launch and a 50 day cruise phase to its final

orbit around the L1 Lagrange point of the Sun-Earth
system, LISA Pathfinder separated from its propulsion
module. Commissioning of the instrument followed, with
the release of the two TMs into free fall 74 days after launch

in mid-February. The mission began science operations on
March 1, 2016, 89 days after launch, and has been
operating smoothly ever since.
The best example of the results obtained to date is the

noise measurement shown in Fig. 1, with the ASD of the
differential TM acceleration Δg compared to the LPF and
LISA requirements. The ASD of the noise, S1=2Δg , is below
LPF requirements by more than a factor 5 at the 1 mHz
lower frequency limit. In addition S1=2Δg is below the LISA
requirement at frequencies higher than 10 mHz and is
above the requirement by no more than a factor 1.4 at all
frequencies between 0.5 and 10 mHz. This factor has
further reduced to 1.25, measured in a later, shorter noise
run on day 146 (see below). Below 0.5 mHz, the noise
increases slightly ending up above the LISA requirement
by roughly a factor 3 at 0.1 mHz. The acceleration noise
ASD is clearly dominated by two main effects which cross
over around 60 mHz; a discussion of the two effects is
given later in the text. This Letter reports on the first
55 days of science operations, including a description of the
differential acceleration measurements performed, the main
results obtained so far, and their implications for a large-
scale space-based GW observatory. In-depth reports on the
wealth of dedicated experiments of LPF, many of which are
still being performed, will be reported in separate papers.

II. DESCRIPTION OF THE TEST

Interferometric gravitational-wave detectors work on the
principle that, in curved spacetime, two distant free-falling
observers exchanging an electromagnetic beam observe a
time-varying difference between their respective measure-
ments of the beam frequency [3]. This effect is indistin-
guishable from that caused by the Doppler effect if the
observers accelerate relative to their respective inertial
frames, meaning that spurious random forces can limit the
sensitivity of interferometric gravitational-wave detectors.
In LISA, the most studied concept for a space-based GW

detector [4], the two free-falling observers are replaced by a
pair of TMs, each in free fall inside a separate spacecraft,
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exchanging a laser beam over a few million kilometres.
To achieve the full science objectives of LISA, the ASD of
spurious random accelerations of the TMs must be limited
to S1=2g ðfÞ ≤ 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=8 mHzÞ4

p
within

the frequency band of the detector, 0.1 mHz ≤ f ≤ 1 Hz.
The f2 relaxation for f ≥ 8 mHz arises because at those
frequencies the noise is expected to be dominated by white
interferometer displacement noise that, when converted to
equivalent acceleration, scales like f2. The requirement
should be given in terms of the differential acceleration,
Δg, between the two test masses. However, as the two
spacecraft are separated by a large distance, force fluctua-
tions around each TM are assumed to be incoherent and
S1=2Δg ¼ ffiffiffi

2
p

S1=2g .
At frequencies below 1 Hz, there is currently no realistic

possibility to reach such a level of free fall in a ground
based laboratory. The main problems are the large accel-
eration of the laboratory relative to a local inertial frame
and low-frequency terrestrial gravitational noise. This
pushes low-frequency GW detectors to space but also
prevents an end-to-end experimental demonstration of
the required free-fall performance in a terrestrial laboratory,
leading to the need for the LISA Pathfinder mission, whose
requirements for the ASD of Δg have been set at S1=2Δg ðfÞ ≤

30 fm s−2=
ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=3 mHzÞ4

p
within the fre-

quency band 1 mHz ≤ f ≤ 30 Hz. Note that for LPF the
cross-over frequency to the f2 branch (3 mHz), corresponds
to the value used in the earliest LISA concept [4], while the
change to 8 mHz results from the latest studies [2]. This
difference has no practical impact on thework presented here.

A. The instrument

The core instrument of LPF [5], consists of two quasi-
cubic test masses, of size ð46.000� 0.005Þ mm and mass
M ¼ ð1.928� 0.001Þ kg, formed from a high-purity gold-
platinum alloy. During science operations, these masses are
in free fall inside a single spacecraft with their centers
separated by a nominal distance of ð376.00� 0.05Þ mm
along a line that we take as the x axis (see Fig. 2 and
Ref. [6]). Each TM is contained within an electrode housing
[7], which serves as an electrostatic shield in addition to a
6 degree-of-freedom sensor and electrostatic force actuator,
with gaps around the mechanically and electrically isolated
TM of 2.9–4 mm on the different axes. Charge accumulated
by the TMs due to cosmic rays is removed by a UV light
discharge system [8].
DC and slowly varying electrostatic forces are applied

with dedicated audio frequency voltages between 60 and

FIG. 1. Gray: ASD of Δg, S1=2Δg ðfÞ, measured for 6.5 days starting 127 days after launch. The ASD is the result of averaging 26
periodograms of 40 000 s each, which results in a relative error (1σ) of 10% in S1=2Δg . The effective spectral resolution, set by the spectral
window, is Δf ≃�50 μHz. The absolute calibration of the measurement is better than 5%. Red: ASD of the same time series after
correction for the centrifugal force (visible at the lowest frequencies). Light blue: ASD after correction for the pickup of spacecraft
motion by the interferometer (IFO), visible in the 20–200 mHz range. Dashed smooth black line: SΔgðfÞ ¼ S0 þ SIFOð2πfÞ4 with

S1=20 ¼ ð5.57� 0.04Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
and S1=2IFO ¼ ð34.8� 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
. Note that the level of S0 has decreased further in subsequent

measurements, as quoted in the abstract and shown in Fig. 3. Shaded areas: LISA and LISA Pathfinder requirements for Δg. The LISA
single test-mass acceleration requirement [2] has been multiplied by

ffiffiffi
2

p
to be presented here as a differential acceleration.
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270 Hz, depending on the degree of freedom, which avoids
the mixing of low-frequency electrical noise into force
noise in the measurement band [5].
Voltages are simultaneously applied to all electrodes,

with commanded carrier amplitudes adjusted to produce
any desired force with amplitude up to a fixed limit—
referred to here as the actuation “authority”—while holding
the resulting electrostatic force gradient (or stiffness)
constant. Force noise associated with this electrostatic
suspension depends on the applied force levels but also
on the force and torque authorities [9]. To limit this noise
contribution we have reduced the authority for the critical
x and ϕ (rotation around z, see Fig. 2) degrees of freedom
during science operations.
Our science signal is in the differential displacement of

the two TM along the x axis, Δx≡ x2 − x1, and this is
measured by a dedicated heterodyne laser interferometer
[10–12]. A second interferometer measures the displace-
ment of TM1 relative to the spacecraft, x1. Both interfer-
ometers have quadrant diode wavefront sensing, allowing
measurement of both TM ϕ and η rotations around z and y
(see Fig. 2), respectively.
The TMs and the spacecraft constitute a three-body

dynamical system in which we control all 12 degrees of
freedom of the relative motion of the TMs and spacecraft.
At frequencies below 1 mHz we also control the orientation
of the spacecraft relative to the J2000 reference frame.

Describing the details of this system goes beyond the scope
of this Letter [13]. Here we just recall the logic of the control
scheme for the x axis. Along this axis the spacecraft is
forced to follow TM1 to keep it in the center of its electrode
housing. For this, x1 is fed to a controller residing within the
onboard computer. The controller commands a set of cold-
gas micronewton thrusters to ensure the spacecraft follows
TM1 (see Fig. 2). This scheme, called drag-free control
[13], is also an essential element of the LISA spacecraft
control, and is therefore one of the key elements under test.
A second control loop forces TM2 to stay at a fixed

distance from TM1 and thus centered in its own electrode
housing; we call this electrostatic suspension. The con-
troller, which operates at low frequencies compared to the
LPF measurement band, uses Δx as an error signal, and
commands the electrostatic actuation system to generate
the necessary forces on TM2. This controller is required
because any static difference in force between the TMs
would accelerate TM2 relative to TM1, eventually pushing
it into contact with its electrode housing.

B. Comparing to LISA

Electrostatic suspension along the sensitive axis is not
needed in LISA as the two TMs at the ends of the same arm
can be followed independently by their respective space-
craft along the direction of the laser beam [2]. This results
in both TMs staying centered along the beam direction in
their respective housings.
In LPF, this necessary applied control force must be

subtracted from the measured acceleration to give the
relevant Δg. The subtraction of the commanded force time
series, gcðtÞ, and its calibration, is discussed in the next
section. This also introduces potentially important actuation
force noise, that is not present in LISA, into our LPF data.
Note that everywhere in this Letter forces are expressed per
unit mass and that we treat signals as continuous, as the
10 Hz sampling frequency is much larger than the maxi-
mum frequency of interest of about 0.1 Hz.
The electrostatic suspension is not the only difference

with LISA. As all measurements and controls in LPF are
performed relative to the spacecraft reference frame, the
component of the centrifugal force from rotation around y
and z is directly picked up as an effective differential force.
This force is quite relevant for frequencies below 0.5 mHz
as the input to the attitude controller of the spacecraft is a set
of autonomous star trackers with relatively high sensing
noise of about 10−3 rad=

ffiffiffiffiffiffi
Hz

p
at 0.1 mHz. This noise causes

a significant noisy angular velocity ΩnðtÞ relative to the
local inertial frame. ΩnðtÞ adds to the quasistatic part,
ΩqsðtÞ, of a few degrees per day, needed to keep the
communication antenna pointed toward the Earth. As the
centrifugal force is quadratic in the angular velocity, it
acquires, to first order in Ωn, a noisy component propor-
tional to ΩnðtÞΩqsðtÞ. Nominally, this effect will not be
present in LISA where the two TMs at the end of each

FIG. 2. A schematic of LPF. The figure shows TM1, TM2, and
the optical bench beam paths for measuring Δx and x1.
The measurement of Δx drives the electrostatic suspension of
TM2, which applies the necessary electrostatic forces by means
of the electrodes represented by the four gold plates facing TM2.
All other electrodes surrounding the TMs are not shown.
The measurement of x1 drives the drag-free control loop that
uses the micronewton thrusters to exert forces on the spacecraft.
The figure depicts the x and y axes we use in this Letter, while z is
normal to the figure.
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arm are in free fall along the direction of the beam.
Geometrical imperfections may reintroduce some coupling,
but as the attitude control in LISA uses the wave fronts of
the incoming laser beams as a reference, the resulting
angular noise is expected to be smaller than 10 nrad=

ffiffiffiffiffiffi
Hz

p
[14]. On LPF we thus correct the data by subtracting the
centrifugal force time series, gΩðtÞ, calculated from
the measured spacecraft angular velocity, as discussed in
the next section.
The third relevant difference is in the coupling of the two

masses to the spacecraft motion through the static force
gradients at the nominal positions of the two TMs [5]. In
LISA, the TMs at the ends of one arm are coupled to their
own distant spacecraft, while in LPF they share a common
spacecraft. The quasielastic coupling forces can however
be calibrated and subtracted, both on LPF and LISA [3],
by the local interferometer measurement of the relative
spacecraft motion and dedicated experiments to measure
the force gradients. For LPF we define the force gradients,
or stiffnesses, (per unit mass) in the nominal TM1 and TM2
positions, −ω2

1 and −ω2
2, in terms of the corresponding

natural harmonic oscillator angular frequencies. In our case
the force gradients, dominated by electrostatics and local
gravitation, give rise to an unstable equilibrium at the
nominal TM position, with ω2

1 and ω2
2 both negative.

C. Observables, system calibration,
and data processing

We calculate the main observable of LPF, Δg, as

ΔgðtÞ≡ ΔẍðtÞ þ ω2
2ΔxðtÞ þ Δω2

12x1ðtÞ
− gcðtÞ − gΩðtÞ; ð1Þ

where ΔẍðtÞ is the numerical second time derivative of
ΔxðtÞ and where we have defined the differential stiffness,
Δω2

12 ≡ ω2
2 − ω2

1, which couples spacecraft motion into Δg.
In addition to the subtracted control force, gcðtÞ, stiffness
terms are calculated frommeasureddisplacement time series,
ΔxðtÞ and x1ðtÞ. The centrifugal correction, gΩ, is calculated
from the angular velocity noise, obtained by integrating
the torque that the controller has to apply to the two TMs to
hold them with fixed orientation relative to the spacecraft.
In addition, we measure the quasistatic part of the angular
velocity from the star trackers. From these two measure-
ments, and from the nominal separation between the TMs,
we generate the time series of the centrifugal force.
The contribution from centrifugal force has varied by

more than an order of magnitude over the course of the
55 days of operations presented here. This variation arises
from the fact that both the angular velocity of the spacecraft
and the noise in the angular measurements change with
time.
The centrifugal correction does not introduce significant

excess noise. We estimate this noise by using the difference

between the integrated torques on TM2 and TM1, instead
of their mean, as the difference is insensitive to spacecraft
motion but still sensitive to measurement noise. We find
that the excess noise for the run in Fig. 1 is smaller than
1 fm s−2=

ffiffiffiffiffiffi
Hz

p
. We also find that the residual low-

frequency noise in the final run on day 146, where the
centrifugal correction is negligible due to orbital dynamics,
is compatible with that of Fig. 1.
The data series in Eq. (1) are calibrated as follows. We

inject a guidance signal into the electrostatic suspension
loop consisting of a discrete set of sinusoidal modulations
at frequencies between 1 and 30 mHz with amplitudes
of around 1 nm. In addition to modulating the relative
displacements of TM2 relative to TM1 and to the space-
craft, this signal also introduces relatively large com-
manded forces, gcðtÞ. We also inject similar guidance
signals into the drag-free loop to excite the motion of
the spacecraft relative to TM1 and to calibrate Δω2

12. To
extract the calibration parameters we fit ΔẍðtÞ to the
following simple model:

ΔẍðtÞ ¼ ð1þ λÞgcðtÞ − ω2
2ΔxðtÞ − Δω2

12x1ðtÞ; ð2Þ

leaving λ, ω2
2, and Δω2

12 as free parameters in the fit.
The quality of the fit is generally good, as the ASD of the
residuals agrees with that of the data series measured in the
absence of the injected signals.
We find λ ¼ 0.012� 0.005, showing that, within about

2σ, the calibration of gc is consistent with the independent
calibration of ΔẍðtÞ. The first of these independent cali-
brations is based on the absolute voltage calibration of
the electronics together with a capacitive model derived
from finite element calculations and tested with a torsion
pendulum [15]; the second is based on the combination of
the absolute calibration of the interferometer’s response,
also measured on ground, of the onboard clock, and finally
of the mass of the TMs. This also shows that all these
calibrations have not been affected significantly by launch
and by on-orbit operations.
As an independent confirmation of the absolute calibra-

tion of forces we have also modulated the power of the laser
beam that hits the TMs. The measured peak value of the
force resulting from the photon pressure agrees with that
calculated from the power modulation to an accuracy of
about 20%.
The measured stiffness values agree at a 10% level

with the expected values from our model of spacecraft
self-gravity [16] and electrostatic force gradients, the
latter including both sensing and applied x and ϕ
actuation voltages. Relevant values for the run analyzed
in Fig. 1, employing the minimum actuation authorities in
which gravitation is the dominant contribution, are ω2

2 ¼
ð−525� 30Þ × 10−9=s2 and Δω2

12 consistent with zero.
The calibration of the centrifugal force relies on the same

calibration of the actuation electronics performed for gc, the
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absolute angular calibration of star trackers, the calibration
of the distance between TMs, and finally on the moments
of inertia of the TMs. The accuracy is limited by the errors
in torque calibration and can be estimated to be of the
order 5%.
After calibration of the system, the estimate of the ASD

ofΔg is made on several noise-only runs, each lasting many
days, during which no calibration forces were applied to the
TMs. Data from these runs were processed to form a set of
ΔgðtÞ time series according to Eq. (1). The ASD of these
data series was estimated using Welch’s averaged periodo-
grammethod [17,18], using 50% overlapping data stretches
and a Blackmann-Harris spectral window. The first four
frequency bins of the averaged periodogram, including the
one at dc, are discarded, as they are heavily biased by the
spectral leakage from very low-frequency noise.

III. RESULTS AND DISCUSSION

Eleven noise runs, with durations ranging from 1.5 days
up to 2 weeks, giving a total of more than 650 hours,
were performed in the first 55 days of operations, all of
which ran to completion smoothly in their science meas-
urement configuration. During these measurement periods
only two significant “fast” glitches (about 100 s duration),
and one long period (several hours duration) of non-
stationarity were observed. These outliers have been
excluded from the analysis reported in Fig. 3.
With the noise slowly decreasing over most of the

frequency range, the ASD in Fig. 1 uses data from the last
continuous stretch of data long enough to give 10%
statistical precision at frequencies down to 0.1 mHz (days
127–133, with 26 windows of length 40 000 s). A later,
shorter run, of roughly 2 day duration is included in the time
series of Fig. 3 to illustrate the final noise reached at the time
of writing, which is significantly lower in the white noise-
dominated band above 1 mHz. We also note that the noise
run shown in Fig. 1 used the lowest actuation authority
employed thus far and, coincidentally, corresponds with the
largest centrifugal force noise correction of the entire data
set. We report in Fig. 1 the ASD of the uncorrected data,
which shows that, if unaccounted for, the centrifugal force
noise would dominate the ASD below 0.5 mHz.
Interferometer readout noise in Δx, with displacement

spectral density SIFO, contributes to the ASD of Δg,
according to Eq. (1), a term S1=2IFOð2πfÞ2. Frequency-
independent interferometer noise, limited by noise in the
phasemeter [10,11], results in a displacement noise ASD of
ð34.8� 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
and dominates Δg above 60 mHz.

The raw noise between 20 and 200 mHz exceeds this
white noise model in a pronounced “bulge” caused by
pickup of the noisy spacecraft motion in the Δx interfero-
metric readout. Independent observations of the spacecraft
motion show a similar bulge in this band with a maximum
jitter of 8–30 nm=

ffiffiffiffiffiffi
Hz

p
on the different axes. By adjusting

the angular control setpoints for the TM rotation around the
y and z axes for a better beam alignment, this bulge of noise
in Δx was reduced by roughly a factor of 2 in ASD around
80 mHz. The remainder of the pickup that can be seen in
Fig. 1 is removed in software by subtracting a linear
combination of the measured spacecraft translational and
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FIG. 3. (a) Square root of the averaged power spectral
density of Δg in the 3–8 mHz and 0.1–0.4 mHz frequency
bands as a function of time. This is calculated from a numerical
integration over the relevant band, S̄≡ 1

f2−f1

R f2
f1

SðfÞdf. (b) Qua-
sistatic value of Δg as a function of time, both for the raw time
series and, to highlight the unexplained portion of this, the same
data corrected for the differential gravitation calculated from
the depletion of propellant mass. This correction is large and
negative, resulting in consistently higher Δg values for the
corrected data series compared to the native one. All time series
are based on 100 000 s groups of 50% overlapped windows
from the 11 noise runs, with 10 000 s windows used for the
3–8 mHz band and 40 000 s for the other three data series. In all
cases the errors are assigned based on the scatter between
the averaged windows. Gaps in the data series shown here are
due to the presence of both station-keeping maneuvers and other
experiments.
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rotational acceleration from Δg. Capacitive sensing pro-
vides estimates of the spacecraft translation along the y and
z axes and interferometric readouts give measurements of
the x translation and rotation around y [7].
The ASD of this corrected time series is shown in light

blue in Fig. 1. All fitting coefficients are in the range
allowed by a geometrical model of the optical system and
by the optical bench design and manufacturing tolerances,
and remain stable among runs with the same TM alignment
and electrostatic suspension settings. As spacecraft motion
is correlated among the different degrees of freedom, the
correction procedure is not entirely unambiguous and
different combinations of signals also fit the data with
acceptable quality.
The bump in the raw data spectrum is visible only

because the interferometer noise is well below the required
levels, and its correction here is performed only to
consolidate our noise model.
We note that the performance of this interferometer is

significantly better than required for the local test mass
interferometer readout in LISA.

A. Known force noise contributions

Brownian noise associated with viscous gas damping
likely dominates the region of the spectrum where we
observe a nearly frequency-independent acceleration noise
contribution of S1=20 ¼ ð5.57� 0.04Þ fm s−2=

ffiffiffiffiffiffi
Hz

p
at all

frequencies above 1 mHz in the main noise run (Fig. 1),
decreasing to ð5.2� 0.1Þ fm s−2=

ffiffiffiffiffiffi
Hz

p
in the most recent

run at day 146. This Brownian noise, with power propor-
tional to p=

ffiffiffiffiffiffi
m0

p
for a residual gas of molecular weight m0

at pressure p, has been found [19], both experimentally and
in simulations, to be increased by the close proximity of
electrode housing surfaces, at only 2.9–4 mm gaps from the
46 mm cubic TM.With this model, the observed noise floor
here could be explained by 9.5 μPa of water, or roughly
three times larger pressure for H2.
The mean ASD in this frequency range, and thus also the

upper limits on the residual pressure, are observed to
decrease over time by roughly a factor of 1.5 over the
55 day period presented. Figure 3 shows the average noise
in the 3–8 mHz band for all noise runs starting from 91 days
after launch. Data from the first noise run are excluded here
to limit the analysis to points where actuation noise
(discussed in the next section) contributes less than 5%
noise power. The data for the 3–8 mHz average are
consistent with a 1=ðt − t0Þ decay, as might be expected
for a vacuum system which has only been vented to space
since the beginning of February, two weeks before test
mass release.
Using the radiometric effect, additional pressure upper

limits have been measured with several dedicated thermal
gradient experiments. In these tests an oscillating temper-
ature difference, ΔT, is applied across the TM housing

with dedicated resistive heaters, and the resulting force
coupling, dF=dΔT is measured [20]. Measurements are
performed over a range of average temperatures (albeit
only spread over a few kelvins), to help discriminate
the radiometric effect—with ðdF=dΔTÞ ∝ ðp=TÞ—from
more strongly temperature dependent contributions aris-
ing from radiation pressure and temperature dependent
outgassing [20]. These measurements of dF=dΔT also
show a significant decay over time and place an absolute
average pressure upper limit of roughly 22 μPa at the time
of the main noise measurement shown in Fig. 1. Though
consistent with a Brownian noise floor due to a decaying
atmosphere of water, further measurement and analysis
are under way to place a more stringent estimate of the
residual pressure and other possible noise sources in this
mHz frequency band.
An increase in the noise is clearly visible in Fig. 1 at

frequencies below 0.5 mHz. This source of noise increases
above the white noise background with decreasing fre-
quency, slightly exceeding 10 fm s−2=

ffiffiffiffiffiffi
Hz

p
from 0.1 to

0.3 mHz. The remainder of the mission’s experimental
campaign will be largely dedicated to establishing a
quantitative experimental model for this low-frequency
noise, along the lines of the analysis in Ref. [9] and
supplemented by ground measurements where available.
A partial analysis is possible for many sources with the

data already measured. For instance, actuation noise from
fluctuations in the electrostatic force applied on TM2 was
expected to be the dominant noise around 1 mHz [9],
increasing with both the needed applied dc forces and the
force and torque authorities, as discussed in Sec. II A.
The quasi-dc differential acceleration has varied over the

mission, decreasing from a maximum of slightly more than
20 pm=s2 at the start of operations (see the “native”Δg data
in Fig. 3(b)). This is well below the 600 pm=s2 budgeted
for the applied force level due to the successful gravita-
tional balancing of the spacecraft [16], and has allowed us
to reduce the force authority along x to roughly 25 pm=s2

during the measurement shown in Fig. 1. At this level,
actuation noise is a negligible contributor around 1 mHz, so
we chose not to reduce the control authority any further to
maintain an ample margin. The actuation noise measured
around 1 mHz with much larger authorities (1.1 nm=s2),
prior to the measurements shown in Figs. 1 and 3, was
consistent with the roughly 5 ppm=

ffiffiffiffiffiffi
Hz

p
actuation stability

measured on ground [9]. Reliable projection to the 0.1 mHz
noise in the current low authority configuration is not
possible from the high authority measurements, due to the
low-frequency noise nonstationarity—a steady improve-
ment to be discussed shortly—early in the mission, and
low-frequency actuation noise will be the target of an
upcoming measurement campaign.
At low frequencies, various other noise sources that

contribute to the LPF error budget (and to any future LISA-
like mission) need to be considered. A partial list of sources
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and the current status of our experimental knowledge is
summarized here:
TM charge fluctuations (δq) from cosmic rays, couple to

stray electrostatic fields to produce force noise, with
δF¼ð∂F=∂qÞδq. Measured values of ∂F=∂q—essentially
the average stray field inside the electrode housing [21]—
combined with measured long-term fluctuations of the
TM charge, yield an estimate of roughly 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
at 0.1 mHz for this effect. Full compensation of ∂F=∂q
with applied voltages will be done now with LPF and, if
needed, in LISA. Additionally, an upcoming measurement
of acceleration noise with an intentionally charged TM will
quantify the role of temporal fluctuations in the stray
electrostatic fields themselves.
Thermal gradient effects can produce time-varying stray

forces, as mentioned in the discussion of Brownian noise.
Measured values of dF=dΔT≃20pms−2=K and estimates
of the temperature fluctuations from thermistors [22]
(measured to be 10 μK=

ffiffiffiffiffiffi
Hz

p
at 1 mHz, and 50 μK=

ffiffiffiffiffiffi
Hz

p
at 0.1mHz) put anupper limit on this effect of1 fm s−2=

ffiffiffiffiffiffi
Hz

p
at 0.1 mHz.
Laser radiation pressure fluctuations cause a fluctuating

force on both TMs. Measured laser intensity fluctuations of
the order of 0.4 μW=

ffiffiffiffiffiffi
Hz

p
indicate a force noise contribu-

tion of roughly 2 fm s−2=
ffiffiffiffiffiffi
Hz

p
.

Magnetic force effects are analyzed with the magnetic
field fluctuations measured onboard by four different
magnetometers [5], and their ASD is ≃100 nT=

ffiffiffiffiffiffi
Hz

p
at

0.1 mHz. This, together with the fact that fluctuating field is
uniform in space, indicates that the fluctuations arise from
the interplanetary field. In a uniform field the magnetic
force is dominated by the interaction of the magnetic
moment induced in the TM by the fluctuating field, with
the static magnetic gradient at the TM location. Pending a
planned onboard calibration, we can only use upper limits
to the gradients derived from ground measurements [9] for
the calculation of the ASD of the force. From these we get
an estimate consistent with the full excess noise observed at
0.1 mHz. However, the lack of significant linear correlation
between the measured magnetic field time series and Δg
places a more stringent upper limit to this contribution
at 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
.

B. Additional observations

In addition to the steady state levels of these and other
noise sources, we add that the low-frequency noise has
been observed to decrease by about 1 order of magnitude in
the 0.1–0.4 mHz band (see Fig. 3(a)) over the first 55 days
of operations leading up to the measurement presented
in Fig. 1.
We do not have an explanation for the large value of the

low-frequency noise at the beginning of operations, nor for
its improvement over time. It may, however, be related
to a drift in the “quasistatic” value of Δg (see Fig. 3(b)).

The rate of change of Δg, not fully explained by the self-
gravity change from propellant depletion, is also observed
to decrease by a factor of 4 in the first two months of
operations. There may be a relaxation mechanism, perhaps
related to the pressure decay or mechanical stress release,
responsible for both the decaying drift in Δg and the
improving noise spectrum at frequencies near 0.1 mHz.
This effect, and the future evolution of the system, will be
studied during the rest of the mission.
In conclusion, compared to the LISA single TM accel-

eration noise requirements of 3 fm s−2=
ffiffiffiffiffiffi
Hz

p
, the current

LPF results are a factor of 1.25 higher at mHz frequencies
and about a factor of 3 at 0.1 mHz. At all frequencies the
noise has been improving up to the point of writing.
A fraction of the very low-frequency noise can be

explained by the terms in our noise budget that have been
measured to date. Further measurements during the rest of
the mission aim to consolidate the noise model and
establish what, if any, mitigation strategy will be needed
for LISA.

IV. IMPACT OF THE LISA
PATHFINDER RESULT

LISA Pathfinder has demonstrated in its first 55 days
of science operations the functionality of a system quite
similar to that needed aboard each satellite of a space-based
GW observatory: 15 degree-of-freedom control including
two free-falling test masses, a drag-free satellite with
cold gas thrusters, electrostatic force actuation, contactless
test-mass charge control, and short arm interferometric
local displacement and attitude readout, the first of its kind
in orbit. All of these subsystems have performed as
expected and could be used for LISA. The system has
proven to be extremely stable, reliable, and robust, never
falling out of the science measurement mode and with
continuous, 100% duty cycle data stretches limited to two
weeks only due to maneuvers needed to maintain the
L1 orbit.
The performance obtained and the corresponding physi-

cal model for the LPF differential acceleration measure-
ment between free-falling test masses, are already at a
level that allows implementation of a successful GW
observatory in space; both have far-reaching consequences
for gravitational experimentation in general. The current
LPF noise floor in the mHz band is 4–5 orders of
magnitude below the best levels achieved to date by the
GOCE geodesy mission [23]. The results from LPF show
that sub-femto-g differential accelerometry is possible
far away from the low earth-orbit gravity gradient. The
corresponding required reduction of acceleration noise
arising from spurious forces is achieved by design, the
main features of which are kilogram sized TMs, millimeter
gaps, the absence of applied dc voltages and discharge
wires, and the measurement of relative motion with a high
precision interferometer.
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The consequences are even more striking for the obser-
vation of GWs from space. If transferred to the LISA
observatory configuration, the acceleration noise perfor-
mance already achieved on LISA Pathfinder would allow
for an observatory performance very near the original LISA
mission goals [2]. Heavier black hole mergers dominated
by low-frequency emission, such as 107 M⊙ total mass at
redshift z ¼ 3, will be visible with a signal-to-noise ratio
(SNR) of 1400, compared with 2000 for the LISA reference
performance; lighter systems (106 M⊙) at the same dis-
tance will give an SNR of 5000, which is within several
percent of the LISA performance. Science from extreme
mass-ratio inspirals and coalescing compact binaries in our
galaxy will give essentially the same SNR as in LISA. The
LISA Pathfinder performance is therefore fully in line with
the mission concept put forward in “The Gravitational
Universe” [24], which was selected by ESA for the third
large mission (L3) of the Cosmic Vision programme. LISA
Pathfinder represents a major step forward in demonstrat-
ing the proposed measurement concept.
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