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We propose genetic algorithms, which are robust optimization techniques inspired by natural selection,
to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can
be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation
protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to
reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary
qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of
any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different
gate errors.
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Optimization problems, a prominent area in computer
science and machine learning [1], are focused on finding,
among all feasible solutions, the best one in terms of
efficiency and resource requirements. In particular, genetic
algorithms (GAs) [2], an especially flexible and robust set
of optimization methods, are inspired by ideas of evolution
and natural selection. In this sense, GAs optimize among
different possibilities, which are codified in the genetic
information of an individual. Evolution is therefore based
on genetic recombination over a group of individuals,
together with some random mutations. Natural selection
is performed according to the optimization criteria, codified
in an evaluation or fitting function. This process is repeated
until the individuals satisfy a condition of adaptation. As
the solutions to the problem are encoded in the genetic
information of the individuals, the information of the
survival corresponds to the optimal solution.
A variety of applications have been designed utilizing

these methods: mirrors that funnel sunlight into a solar
collector [3], antennas measuring the magnetosphere of
Earth from satellites [4], walking methods for computer
figures [5], and efficient electrical circuit topology [6,7].
The resilience against changes in the initial conditions of
the problem is based on the overheads in the resources. For
instance, in the case of electric circuits, when one circuit
element fails, the circuit continues working and the
designed antennas continue measuring signals even under
changes in environmental conditions.
One of the most important limitations in the field of

quantum computing [8] is the fidelity loss of quantum
operations. Quantum error correction protocols [9,10],
which codify logical qubits in several physical qubits,
have been proposed and implemented in different quantum
technologies, such as linear optics [11], trapped ions [12],
and superconducting circuits [13,14]. It is noteworthy to
mention that quantum error correction has been proposed
for gate-based quantum computing [15], and, in principle,

they are also meant to be adaptable to digital quantum
simulations [16]. However, experimental implementations
of quantum error correction protocols applied to specific
quantum algorithms are still to come in the expected
development of quantum technologies.
In this Letter, we propose a protocol based on genetic

algorithms for the suppression of errors occurring within
digital quantum simulations, along the general lines of
bioinspired algorithms in quantum biomimetics [17,18].
First, we prove that GAs are able to decompose any given
unitary operation in a discrete sequence of gates inherently
associated to the experimental setup. Moreover, we
numerically demonstrate that this sequence achieves higher
fidelities than previous digital protocols based on Trotter-
Suzuki methods [16,19]. Second, we show that GAs can be
used to correct experimental errors of quantum gates.
Indeed, architectures combining a sequence of imperfect
quantum gates with ancillary qubits generate a modular
gate with higher fidelity than any of the components of the
sequence. We exemplify this with a possible implementa-
tion of a high-fidelity controlled-NOT (CNOT) modular gate,
which is made out of several imperfect CNOT gates.
Additionally, these architectures show resilience against
changes in the gate error. Therefore, by combining the
concept of digital quantum simulation with GA, it is
possible to design robust and versatile digital quantum
protocols.
Genetic algorithms for digital quantum simulations.—In

the following, we explain how GAs can improve the fidelity
of digital quantum simulations. Up to now, the standard
technique for realizing digital simulations is Trotter-Suzuki
expansion [19], which has been proven to be efficient
[20–22]. This method consists in executing a series of
discretized interactions, resulting in an effective dynamics
similar to the ideal dynamics of the simulated system.
Associated to the unitary evolution of Hamiltonian
H ¼ P

s
j Hj, the Trotter formula reads
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UI ¼ e−iHt ¼ lim
l→∞

ðe−iH1t=l…e−iHst=lÞl; ð1Þ

where UI is the ideal unitary evolution, t is the simulated
time, l is the number of Trotter steps, and Hi are the
Hamiltonians in the simulating system. On one hand, for
a fixed total execution time, the larger the number of
Trotter steps is, the lower the digital error of the simulation.
On the other hand, the execution of multiple gates in a
quantum system can introduce experimental errors due to
decoherence and imperfect gate implementation.
Therefore, there is a compromise between the number of
Trotter steps and quantum operations that can be performed
by the quantum simulator [23,24].
GAs can be employed for outperforming current tech-

niques of digital quantum simulations. The first step of a
digital quantum simulation is the decomposition of the
simulated Hamiltonian into interactions implementable in
the quantum platform, which is a tough task, in general.
However, by using GAs, it is possible to find a series of
gates adapted to the constraints imposed by the quantum
simulator, whose resulting interaction is similar to the one
of Hamiltonian H. For this purpose, we need neither to
satisfy the condition H ¼ P

s
j Hj nor to use the same

execution time for every involved gate. This not only
relaxes the conditions for simulating the dynamics but also
allows us to control the number of gates involved, permit-
ting the possibility of minimizing the experimental error.
Let us assume the situation in which is not possible to

compute the ideal dynamics of a short-range interacting
Hamiltonian, since, for instance, the number of particles is
too large. By using the Trotter-Suzuki formula, it is

possible to decompose the interaction into α local blocks
of k-interacting particles each, out of N total particles. Let
us denote by Uj the ideal unitary evolution of the
Hamiltonian acting on the jth local block of k qubits.
Once the total dynamics is decomposed into blocks, each
Uj has to be implemented employing the resources
available in the experimental platform, as depicted in
Fig. 1. Here, GAs play an important role, since they
provide an architecture for efficiently approximating each
Uj by Wj:

UT ¼
�Yα

j¼1

Uj

�l

¼
�Yα

j¼1

e−iHjt=l

�l

; ð2Þ

UGA ¼
�Yα

j¼1

Wj

�l

; ð3Þ

where α ¼ ⌈ðN − 1=k − 1Þ⌉. We assume that k is suffi-
ciently small to allow the minimization of the error
associated with the approximation in a standard computer.
Therefore, the evaluation function has access to an approxi-
mate version of the complete system dynamics, because
this is solvable in terms of the Trotter expansion. In our
algorithm, as an evaluation function, we compare Trotter
unitary evolution UT for a given number of Trotter steps l
with the unitary evolution obtained from GAs, UGA. The
evaluation function is then given by Rj ¼ ∥Uj −Wj∥ [25].
In addition, for all analyzed examples, the number of gates
involved in the GA protocol is lower than in the Trotter
expansion, which gives positive perspectives for

FIG. 1. Scheme of the GA-based protocol for digital quantum simulations. First, the simulated Hamiltonian is decomposed in local
interaction blocks, separately implemented in different unitary evolutions Uj which act on a subset of k particles of the system. Second,
the set of gates is selected according to the constraints of the simulating quantum technology: total number of gates to avoid an
experimental gate error, interactions restricted to adjacent physical qubits, and implementable phases of the Hamiltonian, among others.
Once the set of gates is determined, GAs provide a constraint-fulfilling sequence of gates, which effectively perform the resulting
dynamics UGA similar to UT .
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experimental realizations of digital quantum simulations
based on this approach.
The upper bound for the total error ξ of the protocol is

obtained by combining the Trotter error with the error of
the GA optimization ξ ¼ ∥UI − UGA∥ ≤ ∥UI −UT∥þ
∥UT −UGA∥. The first term is nothing but the digital error
[19], so we analyze the second term. Consider that Wj, the
unitary provided by the GAs, has a matrix error ηj,
Wj ¼ Uj þ ηj. Let us denote by ~Uj ¼ 1⊗j−1 ⊗ Uj ⊗
1⊗α−j the operations when extending to the whole
Hilbert space, where α is the number of blocks. The same
relation holds for ~Wj and ~ηj; therefore, ~Wj ¼ ~Uj þ ~ηj. We
are now able to compute the error of the GA optimization
for a single Trotter step, given by jjUT−UGA∥¼
∥
Q

~Wj−
Q

~Uj∥¼∥
Qð ~Ujþ ~ηjÞ−

Q
~Uj∥. We approximate

this expression to the first order in ~ηj, ∥
P

~W1…
~Wj−1 ~ηj ~Wjþ1… ~Wα∥ ≤

P
∥ ~W1∥…∥ ~Wj−1∥∥ ~ηj∥∥ ~Wjþ1∥…

∥ ~Wα∥. By computing the norm of the unitary matrices ~Wj,
we obtain

P
∥ ~ηj∥, which coincides with the error in each

of the subspaces, ∥UT − UGA∥ ¼ P
∥ηj∥. Therefore, the

GA error is bounded by the sum of the errors in each
unitary block, which is linear in the number of qubits for
the simulation of a short-range interacting Hamiltonian.
As a final remark, since both W and U are unitaries, we
would like to point out that the error could also be
parametrized by a multiplicative unitary matrix.
However, both approaches are equivalent for small errors
in the sense that Vμ ¼ expðiμHÞ ≈ 1þ iμH þOðμ2∥H∥2Þ
for a small μ, so W ≈U þ iUHμ ¼ U þ η.
We now illustrate the protocol for simulating digitally the

isotropic Ising and Heisenberg spin models with a magnetic
field in a superconducting circuit architecture [23,26,27].
The Hamiltonians of these models are

HI ¼ J
XN
hi;ji

σziσ
z
j þ B

XN
i

σxi ;

HH ¼ J
XN
hi;ji

ðσxi σxj þ σyi σ
y
j þ σziσ

z
jÞ þ B

XN
i

σxi ; ð4Þ

where J is the coupling between nearest-neighbor spins
hi; ji, B is the strength of the magnetic field, and σγi are the
Pauli operators acting on the ith spin with γ ¼ x, y, z. We
decompose the interactions in terms of single-qubit rota-
tions and controlled-PHASE(CPhase) gates between nearest-
neighbor superconducting qubits [28–30]. Following the
approach of Ref. [26], simulating the Ising Hamiltonian
requires N − 1 CPhase and 3N − 2 single-qubit gates, while
the Heisenberg Hamiltonian demands 3(N − 1) CPhase and
11N − 6 single-qubit gates. In this simulation, we consider
a chain of N ¼ 5 spins. The GA computes a digitalized
unitary evolution for a concrete time t, constituted by the
previous gates in a local subspace of k ¼ 2 qubits. Then,
this unitary evolution W1 is repeated by following Eq. (3)
with l ¼ 1 over all adjacent qubits due to the translation
invariance. The resulting unitary process UGA is compared

with the ideal dynamics of the model. This protocol
employs four CPhase and eight single-qubit gates for the
Ising model and four CPhase and 16 single-qubit gates for
the Heisenberg model. Moreover, fidelities are enhanced
when compared with the corresponding to pure digital
methods for a single Trotter step, even using fewer gates, as
shown in Fig. 2. This approach can be applied similarly to
other quantum technologies such as nitrogen-vacancy
centers, trapped ions, and quantum dots among others,
just by adding the constrains of their implementable
quantum gates to the genetic algorithm. In this protocol,
we have considered gates with perfect fidelity. Let us now
focus on how to employ GAs to improve the experimental
error of quantum gates.
Experimental error in a CNOT gate.—Besides outper-

forming protocols for digital quantum simulations, GAs are
also useful for suppressing experimental errors in gates. We
propose a protocol to perform an effective quantum gate by
using ancillary qubits and a set of imperfect gates, and we
illustrate for the CNOT gate. A CNOT gate is given by a
unitary UCNOT ¼ exp½iðπ=2ÞHCNOT�, with HCNOT ¼
1
2
½ð1þ σzÞ ⊗ 1þ ð1 − σzÞ ⊗ σx�. Let us consider imper-

fect gates modeled by WCNOT ¼ exp½iðπ=2ÞHCNOT þ δHR�,
with δ ≪ 1 and HR a random matrix, such
that ∥H∥2 ¼ 1. These unitaries define unital quantum
channels EU ¼ U ⊗ Ū and EW ¼ W ⊗ W̄, respectively,
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FIG. 2. Logarithmic plot of the error E ¼ 1 − jhΨjU†
I
~UjΨij2 in

the evolution of (a) Ising and (b) Heisenberg spin models for
N ¼ 5 qubits, J ¼ 2, B ¼ 1, and jΨi ¼ j0i⊗5. Here, UI is the
ideal unitary evolution, while ~U refers to the unitary evolution
using either a digital expansion in 1 (blue line) and 2 (red line)
Trotter steps or GAs (dashed green line). The GA protocol
requires fewer gates than the digital method for a single Trotter
step achieving similar fidelities to two Trotter steps.
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and we define the error of the gate as the distance
η ¼ ∥EW − EU∥2.
Let us now consider q − 2 ancillary qubits in the state j0i

in addition to the control and target of the integrated CNOT

gate. Let us also consider n imperfect CNOT gates
~W ¼ fW1;…;Wng acting on any possible pair of the q
qubits, with errors ~η ¼ fη1;…; ηng, respectively,
and denote by η ¼ miniηi. The integrated circuit is
defined by a set of n ordered pairs IG~η ¼
fðik; jkÞj1 ≤ ik; jk ≤ q; k ¼ 1;…; ng, where the indices
indicate the control and target qubits, respectively. In order
to calculate the fidelity of the protocol, we compute the
Kraus operators of the integrated CNOT gate, by tracing out
the q − 2 ancillary qubits, and compare the resulting
channel EIG~η

with the unital channel EU, ϵIG~η
¼

∥EIG~η
− EU∥2. If ϵIG~η

< η, then the CNOT gate is imple-
mented with higher fidelity than any of the original CNOT
gates, showing this GA-based architecture’s resilience
against quantum errors.
The set IG~η codifies the genetic information of the

individuals which conform the population evolving into
successive generations. During the reproduction, the indi-
viduals recombine their genetic code, which is also allowed
to mutate. The survival probability depends on the fidelity
of the effective CNOT gate encoded in IG~η, and, therefore,
only individuals associated with a small error succeed.
The number of possible architectures involving n differ-

ent CNOT gates and q ancillary qubits is P ¼ ðq2 − qÞnn!
[31]. The factor ðq2 − qÞn is due to all possible CNOT

configurations in a given order between qubits i and j for n
gates, while n! comes from reordering imperfect gates
fW1;…;Wng. When q and n are small, the optimal
architecture can be found by analyzing all cases.
However, when we increase these parameters, this brute-
force optimization method turns out to be inefficient. GAs
allow us to optimize the protocol in this unreachable
regime, being moreover robust, as analyzed below.
This CNOT case has been analyzed involving three, five,

and seven gates. Notice that, when one considers q ¼ 4 and
n ¼ 7, the number of possible architectures is larger than
1.8 × 1014 for a fixed set of imperfect gates. We have
chosen a set of gates and find the optimal architecture by
GA. Then, we analyze the resilience or robustness of this
architecture by changing the set. In Fig. 3, we have depicted
the results for a sampling of 1000 sets of random imperfect
CNOT gates. The pie charts show the percentage of cases
with a lower error than any CNOT gate performed in the
protocol, which are 6% for three qubits, 87% for five, and
96% for seven. Furthermore, the bar charts show the
average improvement of the error for the integrated
CNOT gate with respect to the best implementing CNOT

gate, which is −39%, þ18%, and þ30%, respectively. For
completeness, in Fig. 4, we show the optimal architecture
for q ¼ 4 and n ¼ 5, obtained from a fixed set of imperfect
gates ~W and proven to be robust [31].

Additionally, we have studied the behavior of the protocol
with respect to the number of ancillary qubits. The results
show no significant improvement when the number of
performed gates is small [31]. For instance, architectures
up to n ¼ 7 do not overcome fidelities shown above when
adding a third ancillary qubit,q ¼ 5. However,we expect that
architectures with a larger number of gates would actually
take advantage of using more ancillary qubits in order to
suppress the error.
The same protocol can be applied in the realization ofmore

general unitary operations. Additionally, the gates conform-
ing the building blocks can be arbitrary, which facilitates the
adaptation of the protocol to any experimental platform.
In summary, in this work we proposed a new paradigm

based on GAs to enhance digital quantum simulations and
face different types of quantum errors. We showed that they
can be used to improve the fidelity of quantum information
protocols by effectively reducing digital errors produced in
Trotter-Suzuki expansions. Our method allowed us to
correct experimental errors due to imperfect quantum gates,

FIG. 3. Error resilience for architectureswith n ¼ 3, 5, 7 imperfect
CNOT gates using 1000 runs. Pie charts show the percentage of cases
in which the fidelity of the effective CNOT gate overmatches the best
CNOT gate employed in the architecture. Bar charts show the
distribution of cases according to the relative improvement in the
error, again when compared with the best CNOT gate.

FIG. 4. Scheme of the optimal architecture for constructing a
CNOT gate with five imperfect gates, by using two ancillary qubits
initialized in state j0i. Here, C is the control, T is the target, and
A1 and A2 are the ancillary qubits.
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by using ancillary qubits and optimized architectures. We
also argued that solutions provided by GAs manifest
resilience against digital and experimental quantum errors.
From a wide perspective, we expect that GAs will be part of
the standard toolbox of quantum technologies and a
complementary approach to analog [32,33] and digital
[34] optimal-control techniques.
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